Pairing-Based Batch Arguments for NP with a Linear-Size CRS

Binyi Chen

Noel Elias

David Wu

Stanford University

UT-Austin

UT-Austin

Batch Arguments for NP

Boolean circuit satisfiability

$$\mathcal{L}_C = \{x \in \{0,1\}^n : \exists w, C(x, w) = 1\}$$

Prover

$$(x_1,\ldots,x_\ell)$$

Goal: convince verifier that $x_i \in \mathcal{L}_C$ for all $i \in [\ell]$

Verifier

Batch Arguments for NP

Boolean circuit satisfiability

$$\mathcal{L}_C = \{x \in \{0,1\}^n : \exists w, C(x, w) = 1\}$$

Prover

$$(x_1, \ldots, x_\ell)$$

Goal: convince verifier that $x_i \in \mathcal{L}_C$ for all $i \in [\ell]$

Verifier

<u>Proof size</u>: Sublinear in ℓ , i.e., $|\pi| = |C| \cdot \text{poly}(\log \ell, \lambda)$

Batch Arguments for NP

Boolean circuit satisfiability

$$\mathcal{L}_C = \{x \in \{0,1\}^n : \exists w, C(x, w) = 1\}$$

Prover

$$(x_1, \dots, x_\ell)$$

Goal: convince verifier that $x_i \in \mathcal{L}_C$ for all $i \in [\ell]$

Verifier

Similar for verifier time (beyond reading statements)

Proof size: Sublinear in ℓ , i.e., $|\pi| = |C| \cdot \text{poly}(\log \ell, \lambda)$

Different Paths towards BARGs

- iO or knowledge assumptions
- Or rely on the Random Oracle Model

Correlation Intractability:

[C]]'2 la, C]]'2 lb...]

CI-hash is a heavy machinery

Different Paths towards BARGs

SNARGs:

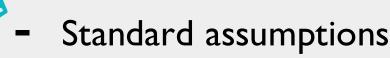
- iO or knowledge assumptions
- Or rely on the Random Oracle Model

Correlation Intractability:

CI-hash is a heavy machinery

[CJJ'21a, CJJ'21b...]

[WW'22...]



No heavy tool + Black box crypto

Different Paths towards BARGs

SNARGs:

- iO or knowledge assumptions
- Or rely on the Random Oracle Model

<u>Correlation</u> <u>Intractability:</u>

A.

CI-hash is a heavy machinery

[CJJ'21a, CJJ'21b...]

- Standard assumptions

Pairing-Based
[WW'22...]

No heavy tool + Black box crypto

Quadratic CRS and prover-time : (

Scalability Challenge

Quadratic CRS and prover-time : (

Pairing-Based:

[WW'22...]

Standard assumptions

No heavy tool + Black box crypto

Scalability Challenge

Quadratic CRS and prover-time : (

Pairing-Based:

[WW'22...]

- Standard assumptions
- No heavy tool + Black box crypto

Example Parameters:

- CRS for $\ell = 10^5$: $> 10^8$ group elements
- Recursion? [ww'22]: Non-black-box crypto + Impractical

Q: Pairing-based BARG with linearsize CRS & quasi-linear prover time?

Our Results

A New Pairing-based BARG for NP

- CRS size: Linear in the # of instances ℓ
- Prover time: $\approx \widetilde{O}_{\lambda}(|C| \cdot \ell)$
- Based on a q-type assumption

Our Results

A New Pairing-based BARG for NP

- CRS size: Linear in the # of instances ℓ
- Prover time: $\approx \widetilde{O}_{\lambda}(|C| \cdot \ell)$
- Based on a q-type assumption

Hybrid of BDH Exponent [BBG'05] + Subgroup Decision Assumption [BGN'05]

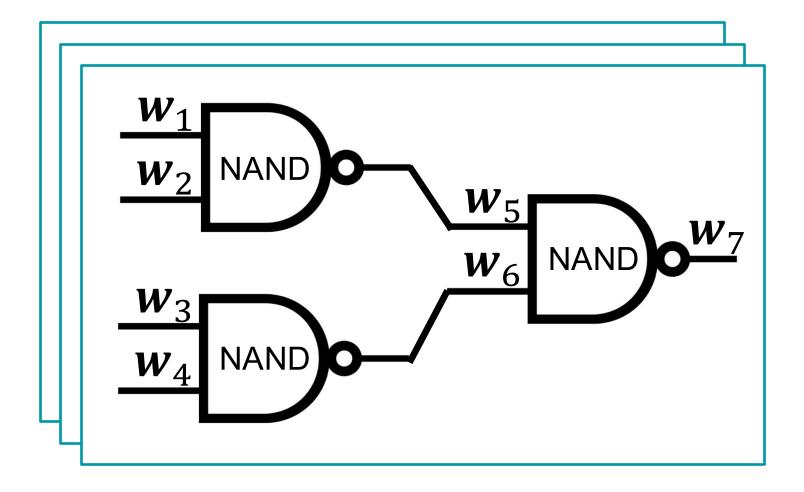
Our Results

A New Pairing-based BARG for NP

- CRS size: Linear in the # of instances ℓ
- Prover time: $\approx \widetilde{O}_{\lambda}(|C| \cdot \ell)$
- Based on a q-type assumption

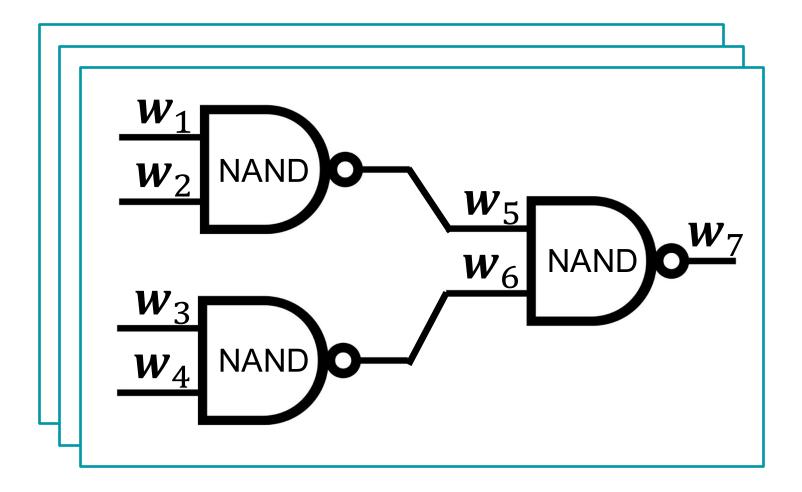
Hybrid of BDH Exponent [BBG'05] + Subgroup Decision Assumption [BGN'05]

Proven secure in the GGM



Vector of labels for wire i across ℓ instances

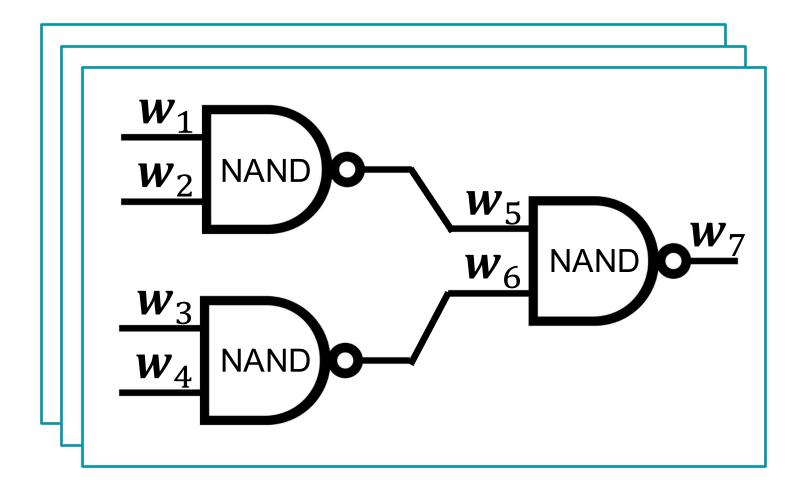
$$\mathbf{w}_i = (w_{i,1}, w_{i,2}, ..., w_{i,\ell})$$



Vector of labels for wire i across ℓ instances

$$\mathbf{w}_i = (w_{i,1}, w_{i,2}, ..., w_{i,\ell})$$

$$\sigma_i$$
 s.t. $|\sigma_i| = \text{poly}(\lambda)$



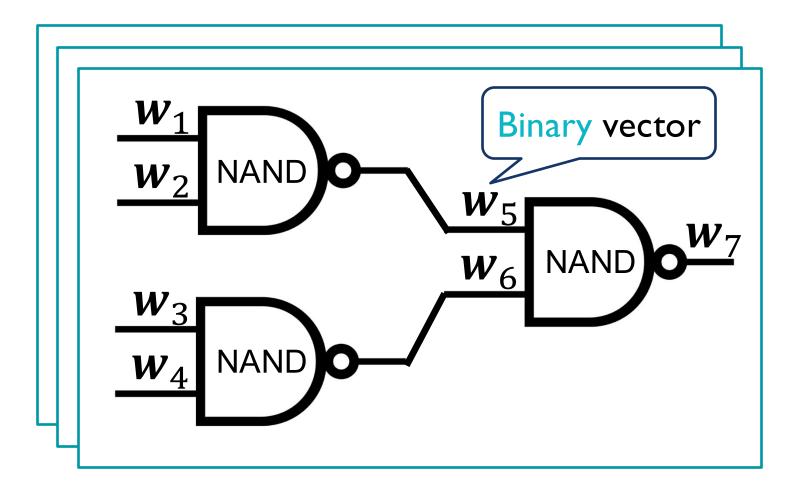
Vector of labels for wire i across ℓ instances

$$\mathbf{w}_i = (w_{i,1}, w_{i,2}, ..., w_{i,\ell})$$

Pedersen comm

$$\sigma_i$$
 s.t. $|\sigma_i| = \text{poly}(\lambda)$

Wire validity



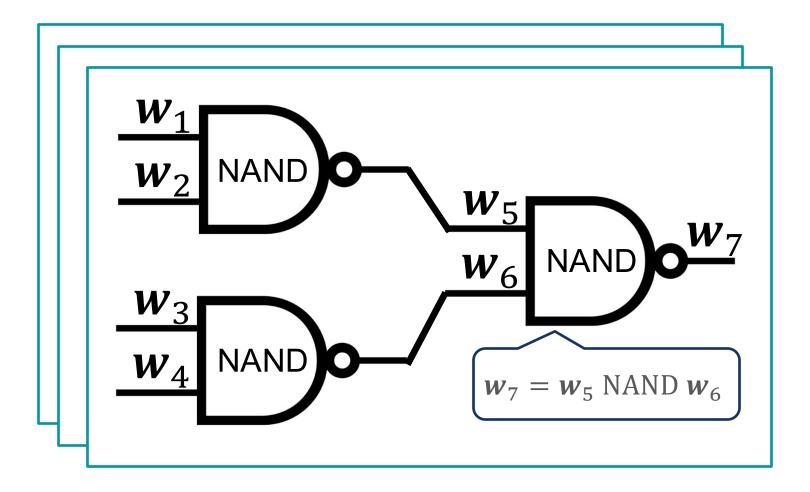
Vector of labels for wire i across ℓ instances

$$\mathbf{w}_i = (w_{i,1}, w_{i,2}, ..., w_{i,\ell})$$

Pedersen comm

$$\sigma_i$$
 s.t. $|\sigma_i| = \text{poly}(\lambda)$

Wire validity

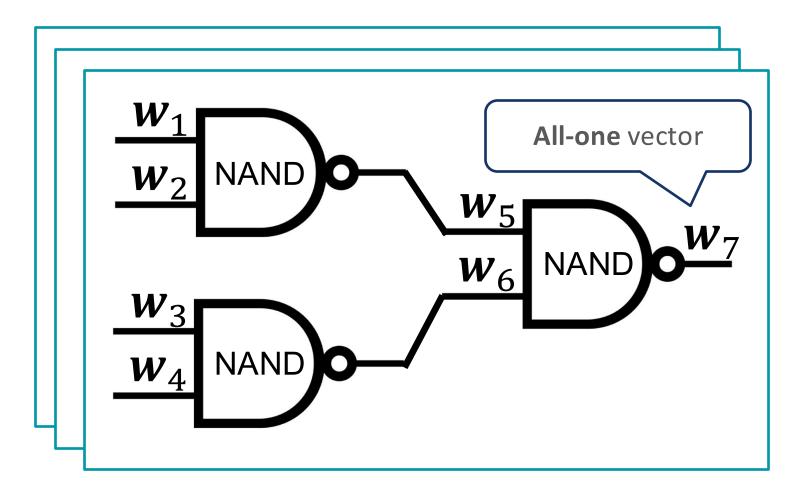


$$\mathbf{w}_i = (w_{i,1}, w_{i,2}, \dots, w_{i,\ell})$$
Pedersen comm

$$\sigma_i$$
 s.t. $|\sigma_i| = \text{poly}(\lambda)$

Validity proofs

Gate validity



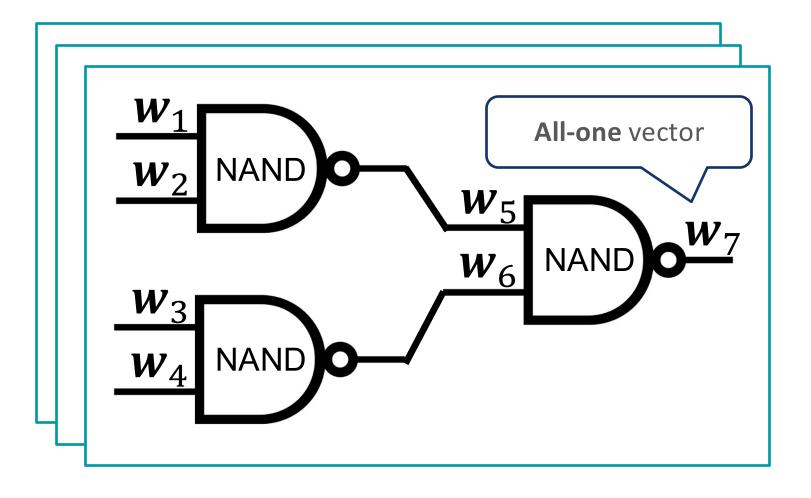
$$\mathbf{w}_i = (w_{i,1}, w_{i,2}, \dots, w_{i,\ell})$$
Pedersen comm

$$\sigma_i$$
 s.t. $|\sigma_i| = \text{poly}(\lambda)$

Output validity

Commit-and-Prove for BARG

[Waters, Wu, Crypto'22]



$$\mathbf{w}_{i} = (w_{i,1}, w_{i,2}, \dots, w_{i,\ell})$$

Pedersen comm

$$\sigma_i$$
 s.t. $|\sigma_i| = \text{poly}(\lambda)$

Validity proofs

Output validity

BARG proof: $\{\sigma_i\}$ + validity proofs

Q: How to compute validity proofs?

Let's focus on wire validity proofs

G: Group of order N = pq

 \mathbb{G}_p : Subgroup of order p w/ generator g_p

G: Group of order N = pq

 \mathbb{G}_p : Subgroup of order p w/ generator g_p

CRS: $[\alpha_1]$, $[\alpha_2]$, ..., $[\alpha_\ell]$ for rand. α_i over \mathbb{Z}_N

G: Group of order N = pq

 \mathbb{G}_p : Subgroup of order p w/ generator g_p

CRS: $[\alpha_1]$, $[\alpha_2]$, ..., $[\alpha_\ell]$ for rand. α_i over \mathbb{Z}_N

$$g_p^{\alpha_\ell} \in \mathbb{G}_p$$

Commit $\mathbf{x} = (x_1, ..., x_\ell) \in \{0, 1\}^\ell$:

G: Group of order N = pq

 \mathbb{G}_p : Subgroup of order p w/ generator g_p

CRS: $[\alpha_1]$, $[\alpha_2]$, ..., $[\alpha_\ell]$ for rand. α_i over \mathbb{Z}_N

$$g_p^{\alpha_\ell} \in \mathbb{G}_p$$

Commit $\mathbf{x} = (x_1, ..., x_\ell) \in \{0, 1\}^\ell$:

$$\sigma_{\mathcal{X}} = x_1[\alpha_1] + x_2[\alpha_2] + \dots + x_{\ell}[\alpha_{\ell}]$$

$$\sigma_{x} = x_1[\alpha_1] + x_2[\alpha_2] + \dots + x_{\ell}[\alpha_{\ell}]$$

$$\boldsymbol{x} = (x_1, \dots, x_\ell)$$
 is binary

$$\sigma_{x} = x_1[\alpha_1] + x_2[\alpha_2] + \dots + x_{\ell}[\alpha_{\ell}]$$

$$x = (x_1, ..., x_\ell)$$
 is binary $x_i^2 = x_i$ for all $i \in [\ell]$

$$\sigma_{x} = x_1[\alpha_1] + x_2[\alpha_2] + \dots + x_{\ell}[\alpha_{\ell}]$$

$$x = (x_1, ..., x_\ell)$$
 is binary $x_i^2 = x_i$ for all $i \in [\ell]$

$$(x_1[\alpha_1] + \dots + x_{\ell}[\alpha_{\ell}])^2$$

$$= (x_1[\alpha_1] + \dots + x_{\ell}[\alpha_{\ell}]) \cdot [\alpha_1 + \dots + \alpha_{\ell}]$$

$$-(\sum_{i \neq j} (x_i - x_i x_j) [\alpha_i \alpha_j])$$
 Cross terms

$$\sigma_{x} = x_1[\alpha_1] + x_2[\alpha_2] + \dots + x_{\ell}[\alpha_{\ell}]$$

$$x = (x_1, ..., x_\ell)$$
 is binary $x_i^2 = x_i$ for all $i \in [\ell]$

$$(x_1[\alpha_1] + \dots + x_\ell[\alpha_\ell])^2 \quad \text{"Multiplication" = Pairing}$$

$$= (x_1[\alpha_1] + \dots + x_\ell[\alpha_\ell]) \cdot [\alpha_1 + \dots + \alpha_\ell]$$

$$-(\sum_{i \neq j} (x_i - x_i x_j) [\alpha_i \alpha_j]) \quad \text{Cross terms}$$

$$\sigma_{x} = x_1[\alpha_1] + x_2[\alpha_2] + \dots + x_{\ell}[\alpha_{\ell}]$$

$$x = (x_1, ..., x_{\ell}) \text{ is binary} \qquad x_i^2 = x_i \text{ for all } i \in [\ell]$$

$$(x_1[\alpha_1] + ... + x_{\ell}[\alpha_{\ell}])^2$$

$$= (x_1[\alpha_1] + ... + x_{\ell}[\alpha_{\ell}]) \cdot [\alpha_1 + ... + \alpha_{\ell}]$$

$$-(\sum_{i \neq j} (x_i - x_i x_j) [\alpha_i \alpha_j]) \text{ Cross terms}$$

$$\sigma_{x} = x_1[\alpha_1] + x_2[\alpha_2] + \dots + x_{\ell}[\alpha_{\ell}]$$

$$x = (x_1, ..., x_{\ell}) \text{ is binary} \qquad x_i^2 = x_i \text{ for all } i \in [\ell]$$

$$(x_1[\alpha_1] + \cdots + x_{\ell}[\alpha_{\ell}])^2$$

$$= (x_1[\alpha_1] + \cdots + x_{\ell}[\alpha_{\ell}]) \cdot [\alpha_1 + \cdots + \alpha_{\ell}]$$

$$-(\sum_{i \neq j} (x_i - x_i x_j) [\alpha_i \alpha_j]) \text{ Cross terms}$$

$$\text{Validity proof}$$

$$\sigma_{x} = x_1[\alpha_1] + x_2[\alpha_2] + \dots + x_{\ell}[\alpha_{\ell}]$$

$$x = (x_1, \dots, x_\ell)$$
 is binary $x_i^2 = x_i$ for all $i \in [\ell]$
$$\sigma_x$$

$$(x_1[\alpha_1] + \dots + x_\ell[\alpha_\ell])^2$$

$$= (x_1[\alpha_1] + \dots + x_{\ell}[\alpha_{\ell}]) \cdot [\alpha_1 + \dots + \alpha_{\ell}]$$

$$-\left(\sum_{i\neq j}(x_i-x_ix_j)\left[\alpha_i\alpha_j\right]\right) \angle \text{Cross terms}$$

Validity proof

Caveat: ℓ^2 -size CRS includes $\{ [\alpha_i \alpha_j] \}_{i \neq j}$

Q: Check quadratic equations without cross-terms?

Q: Check quadratic equations without cross-terms?

Idea: Vector commitment

Polynomial commitment

Quadratic Check using Polynomials

G: Group of order N = pq

 \mathbb{G}_p : Subgroup of order p w/ generator g_p

Quadratic Check using Polynomials

G: Group of order N = pq

 \mathbb{G}_p : Subgroup of order p w/ generator g_p

CRS: [1], $[\alpha]$, ..., $[\alpha^{\ell}]$ for rand. α over \mathbb{Z}_N

G: Group of order N = pq

 \mathbb{G}_p : Subgroup of order p w/ generator g_p

CRS: [1], $[\alpha]$, ..., $[\alpha^{\ell}]$ for rand. α over \mathbb{Z}_N

Commit $\mathbf{w} = (w_1, ..., w_\ell) \in \{0,1\}^\ell$:

G: Group of order N = pq

 \mathbb{G}_p : Subgroup of order p w/ generator g_p

CRS: [1], $[\alpha]$, ..., $[\alpha^{\ell}]$ for rand. α over \mathbb{Z}_N

Commit $\mathbf{w} = (w_1, ..., w_\ell) \in \{0,1\}^\ell$:

Interpolate
$$\phi(x)$$
 s.t. $\phi(i) = w_i$ for all $i \in [\ell]$

G: Group of order N = pq

 \mathbb{G}_p : Subgroup of order p w/ generator g_p

CRS: [1], $[\alpha]$, ..., $[\alpha^{\ell}]$ for rand. α over \mathbb{Z}_N

Commit $\mathbf{w} = (w_1, ..., w_\ell) \in \{0,1\}^\ell$:

$$\phi(x) \text{ s.t.}$$

$$\phi(i) = w_i \text{ for all } i \in [\ell]$$
 Commit
$$\sigma_w = [\phi(\alpha)]$$

G: Group of order N = pq

 \mathbb{G}_p : Subgroup of order p w/ generator g_p

CRS: [1], $[\alpha]$, ..., $[\alpha^{\ell}]$ for rand. α over \mathbb{Z}_N

Commit
$$\mathbf{w} = (w_1, ..., w_\ell) \in \{0,1\}^\ell$$
:

w $\phi(x) \text{ s.t.}$ $\phi(i) = w_i \text{ for all } i \in [\ell]$

Compute from CRS and coefficients of ϕ

$$\sigma_{\mathbf{w}} = [\phi(\alpha)]$$

Commit

Commitment:
$$\sigma_w = [\phi(\alpha)]$$

$$\mathbf{w} = (w_1, ..., w_\ell)$$
 is binary $w_i^2 = w_i$ for all $i \in [\ell]$

Commitment:
$$\sigma_w = [\phi(\alpha)]$$

$$\mathbf{w} = (w_1, ..., w_\ell)$$
 is binary $w_i^2 = w_i$ for all $i \in [\ell]$

$$\phi(i)^2 = \phi(i) \text{ for all } i \in [\ell]$$

Commitment:
$$\sigma_w = [\phi(\alpha)]$$

$$\mathbf{w} = (w_1, ..., w_\ell)$$
 is binary $w_i^2 = w_i$ for all $i \in [\ell]$

$$\phi(i)^2 = \phi(i) \text{ for all } i \in [\ell]$$

$$\phi^2 - \phi = Z_{\ell}(x) \cdot Q(x)$$

Commitment:
$$\sigma_w = [\phi(\alpha)]$$

$$\mathbf{w} = (w_1, ..., w_\ell)$$
 is binary $w_i^2 = w_i$ for all $i \in [\ell]$

$$\phi(i)^2 = \phi(i) \text{ for all } i \in [\ell]$$

$$\phi^2 - \phi = Z_\ell(x) \cdot Q(x)$$

- $Z_{\ell}(x) = \prod_{i \in [\ell]} (x i)$ Q(x): quotient polynomial

Commitment:
$$\sigma_{\mathbf{w}} = [\phi(\alpha)]$$

$$\mathbf{w} = (w_1, ..., w_\ell)$$
 is binary $w_i^2 = w_i$ for all $i \in [\ell]$

$$\phi(i)^2 = \phi(i) \text{ for all } i \in [\ell]$$

$$\phi^2 - \phi = Z_{\ell}(x) \cdot Q(x)$$

$$- Z_{\ell}(x) = \prod_{i \in [\ell]} (x - i)$$

$$- Q(x) : \text{quotient polynomial}$$

Commitment:
$$\sigma_{\mathbf{w}} = [\phi(\alpha)]$$

$$\mathbf{w} = (w_1, ..., w_\ell)$$
 is binary $w_i^2 = w_i$ for all $i \in [\ell]$

$$\phi(i)^2 = \phi(i) \text{ for all } i \in [\ell]$$

$$\phi^2 - \phi = Z_{\ell}(x) \cdot Q(x)$$

$$- Z_{\ell}(x) = \prod_{i \in [\ell]} (x - i)$$

$$- Q(x) : \text{quotient polynomial}$$

$$- Z_{\ell}(x) = \prod_{i \in [\ell]} (x - i)$$

"Multiplication" = Pairing

Commitment:
$$\sigma_w = [\phi(\alpha)]$$

$$\mathbf{w} = (w_1, ..., w_\ell)$$
 is binary $w_i^2 = w_i$ for all $i \in [\ell]$

$$\phi(i)^2 = \phi(i) \text{ for all } i \in [\ell]$$

$$\phi^2 - \phi = Z_\ell(x) \cdot Q(x)$$

-
$$Z_{\ell}(x) = \prod_{i \in [\ell]} (x - i)$$

- $Q(x)$: quotient polyno

Q(x): quotient polynomial

"Multiplication" = Pairing

Validity proof

Commitment:
$$\sigma_{\mathbf{w}} = [\phi(\alpha)]$$

Interpolation set

- Linear CRS size = Roots-of-unity
- $O(\ell \log \ell) \mathbb{Z}_N$ -ops + $O(\ell)$ G-ops

$$\mathbf{w} = (w_1, \dots, w_\ell)$$
 is binary $w_i^2 = w_i$ for all $i \in [\ell]$

$$\phi(i)^2 = \phi(i) \text{ for all } i \in [\ell]$$

$$\phi^2 - \phi = Z_{\ell}(x) \cdot Q(x)$$

$$- Z_{\ell}(x) = \prod_{i \in [\ell]} (x - i)$$

Q(x): quotient polynomial

$$[\phi(\alpha)] \cdot [\phi(\alpha)] - [\phi(\alpha)] \cdot [1] = [Z_{\ell}(\alpha)] \cdot [Q(\alpha)]$$

"Multiplication" = Pairing

Validity proof

Q: How about other validity proofs?

Similar approach, as relations are quadratic

Comparison with [KZG'I0]

[KZG'10]:

- Knowledge soundness
- Knowledge assumptions or AGM

Our result:

- Somewhere extractability
- Security in the standard model
- Falsifiable assumption

Comparison with [KZG'I0]

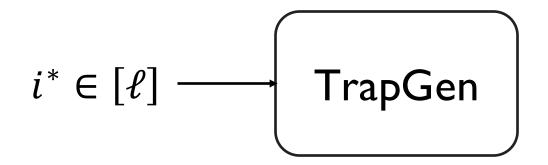
[KZG'10]:

- Knowledge soundness
- Knowledge assumptions or AGM

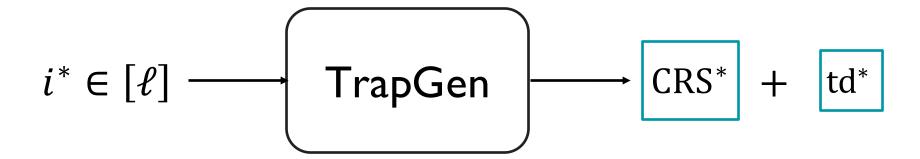
Our result:

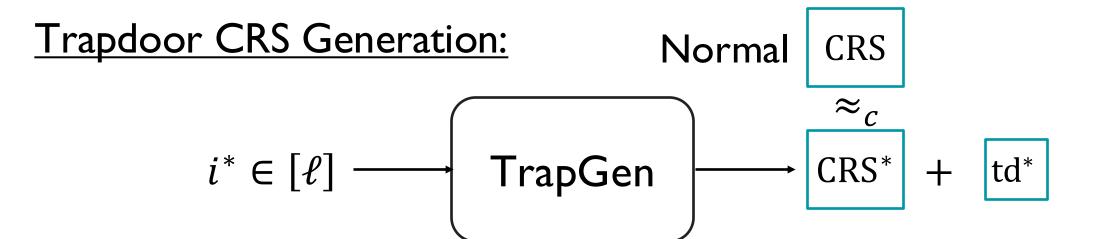
- Somewhere extractability
- Security in the standard model
- Falsifiable assumption

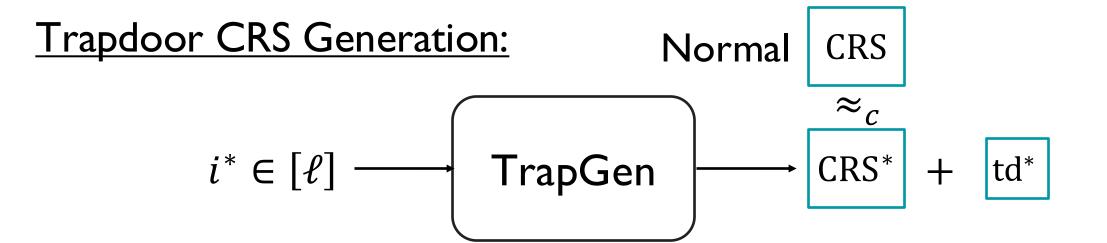
Trapdoor CRS Generation:



Trapdoor CRS Generation:

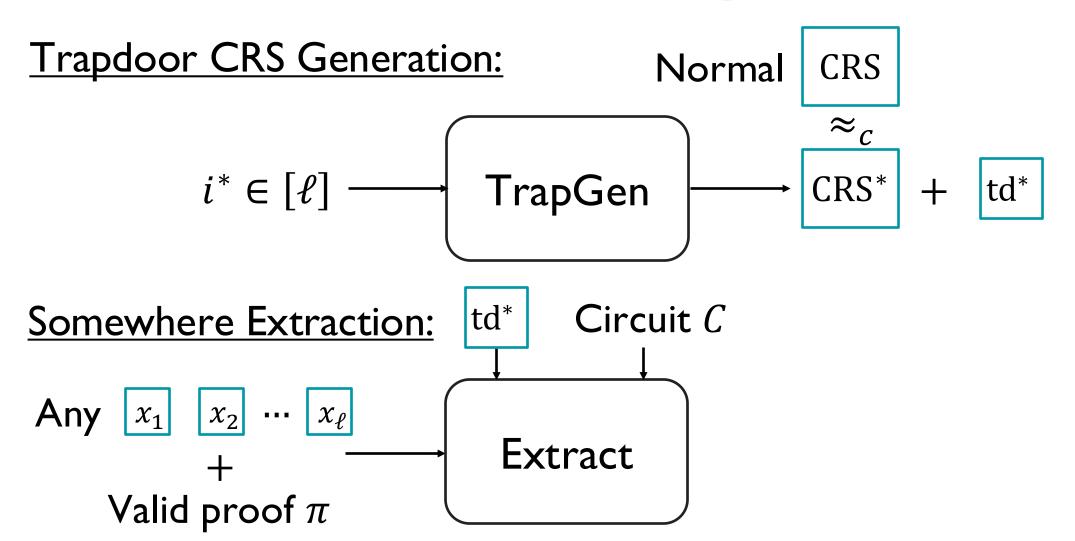


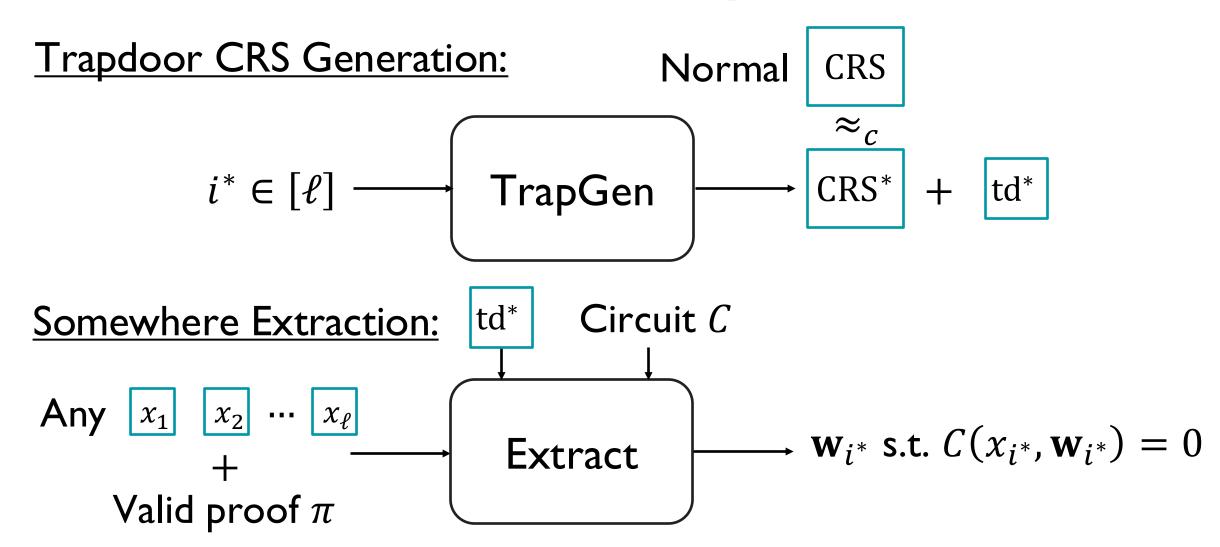




Somewhere Extraction:

Trapdoor CRS Generation: Normal td* Circuit C Somewhere Extraction:





Trapdoor CRS Generation: $i^* \in [\ell]$:

Trapdoor CRS Generation: $i^* \in [\ell]$:

$$|td^*| = g_q \in \mathbb{G}_q$$

Trapdoor CRS Generation:
$$i^* \in [\ell]$$
: $g_p^{\alpha^{\ell}} g_q^{i^{*\ell}}$

$$CRS^* = [1] \cdot [1], [\alpha] \cdot [i^*], ..., [\alpha^{\ell}] \cdot [i^{*\ell}]$$

$$|d^*| = g_q \in \mathbb{G}_q$$

 $\begin{array}{l} \underline{\text{Trapdoor CRS Generation:}} \quad i^* \in [\ell]: \boxed{g_p^{\alpha^\ell} g_q^{i^*\ell}} \\ \\ \text{CRS}^* = [1] \cdot [1], [\alpha] \cdot [i^*], \dots, [\alpha^\ell] \cdot [i^{*\ell}] \\ \\ \approx_c \\ \\ \text{CRS} = [1], \qquad [\alpha] \quad , \dots, [\alpha^\ell] \end{array}$

$$|td^*| = g_q \in \mathbb{G}_q$$

 $\begin{array}{l} \underline{\text{Trapdoor CRS Generation:}} \quad i^* \in [\ell] \colon \boxed{g_p^{\alpha^\ell} g_q^{i^*\ell}} \\ \\ \underline{\text{CRS}^*} = [1] \cdot [1], [\alpha] \cdot [i^*], \dots, [\alpha^\ell] \cdot [i^{*\ell}] \\ \\ \approx_c \\ \\ \underline{\text{CRS}} = [1], \quad [\alpha] \quad , \dots, [\alpha^\ell] \end{array} \qquad \begin{array}{l} \text{Subgroup Decision} \\ \\ \text{Exponent Assumption:} \\ \\ \approx_c [\alpha], \dots, [\alpha^\ell], g_p \\ \\ \approx_c [\alpha], \dots, [\alpha^\ell], g_p g_q \end{array}$

$$\operatorname{td}^* = g_q \in \mathbb{G}_q$$

 $\begin{array}{ll} \underline{\text{Trapdoor CRS Generation:}} & i^* \in [\ell]: \boxed{g_p^{\alpha^\ell} g_q^{i^*\ell}} & \underline{\text{True in GGM}} \\ \\ \underline{\text{CRS}^*} &= [1] \cdot [1], [\alpha] \cdot [i^*], \dots, [\alpha^\ell] \cdot [i^{*\ell}] & \underline{\text{Subgroup Decision}} \\ \\ \approx_c & \underline{\alpha}, \dots, [\alpha^\ell], g_p \\ \\ \approx_c [\alpha], \dots, [\alpha^\ell], g_p g_q \\ \end{array}$

$$|d^*| = g_q \in \mathbb{G}_q$$

CRS* =
$$[1] \cdot [1], [\alpha] \cdot [i^*], ..., [\alpha^{\ell}] \cdot [i^{*\ell}]$$

$$|td^*| = g_q$$
:

$$CRS^* = [1] \cdot [1], [\alpha] \cdot [i^*], \dots, [\alpha^{\ell}] \cdot [i^{*\ell}]$$

A <u>valid</u> wire commitment from the prover is of the form:

$$\sigma_{\mathbf{w}} = [\phi(\alpha)] \cdot [\phi(i^*)] = [\phi(\alpha)] \cdot [w_{i^*}]$$

$$|td^*| = g_q$$
:

CRS* =
$$[1] \cdot [1], [\alpha] \cdot [i^*], ..., [\alpha^{\ell}] \cdot [i^{*\ell}]$$

A <u>valid</u> wire commitment from the prover is of the form:

$$\sigma_{w} = [\phi(\alpha)] \cdot [\phi(i^{*})] = [\phi(\alpha)] \cdot [w_{i^{*}}]$$
 Use td* to project
$$\sigma_{w} \text{ onto subgroup } \mathbb{G}_{q}$$

$$|td^*| = g_q$$
:

$$CRS^* = [1] \cdot [1], [\alpha] \cdot [i^*], \dots, [\alpha^{\ell}] \cdot [i^{*\ell}]$$

A valid wire commitment from the prover is of the form:

$$\sigma_{w} = [\phi(\alpha)] \cdot [\phi(i^{*})] = [\phi(\alpha)] \cdot [w_{i^{*}}] \angle \left\{ \begin{array}{l} \text{Use td}^{*} \text{ to project} \\ \sigma_{w} \text{ onto subgroup } \mathbb{G}_{q} \end{array} \right\}$$

$$td^* = g_q: e(g_q, [\phi(\alpha)] \cdot [w_{i^*}]) = e(g_q, g_q)^{w_{i^*}}$$

$$CRS^* = [1] \cdot [1], [\alpha] \cdot [i^*], ..., [\alpha^{\ell}] \cdot [i^{*\ell}]$$

A <u>valid</u> wire commitment from the prover is of the form:

$$\sigma_{w} = [\phi(\alpha)] \cdot [\phi(i^{*})] = [\phi(\alpha)] \cdot [w_{i^{*}}]$$
 Use td* to project
$$\sigma_{w} \text{ onto subgroup } \mathbb{G}_{q}$$

Allow extraction of $w_{i^*} \in \{0, 1\}$

$$td^* = g_q: e(g_q, [\phi(\alpha)] \cdot [w_{i^*}]) = e(g_q, g_q)^{w_{i^*}}$$

Summary

- Extend [WW'22] to the polynomial setting
- Linear-size CRS, quasilinear prover time, black-box crypto
- Security from falsifiable assumptions

Open Problems:

Extend to prime-order groups?

Lattice-based constructions?

THANK YOU

Eprint 2025/1323

