
BaseFold: Fast Field-agnostic PCS
from Foldable Codes

Hadas Zeilberger Binyi Chen Ben Fisch
Yale Stanford Yale

(zk)SNARKs
(zk)SNARK = A succinct ZK proof showing that ∃𝒘 s.t. 𝐶(𝒙,𝒘) 	= 0

𝜋

Preprocess(pp, 𝐶)

P(pk! , 𝒙,𝒘) V (vk! , 𝒙)

Requirements for 𝝅:
• Completeness: honest P can compute valid 𝜋
• Knowledge soundness: P* knows valid 𝒘 if it can generate valid 𝜋
• Succinctness: 𝜋 ≪ |𝒘| and fast to verify
• Zero knowledge: 𝜋	hide the witness 𝒘

→ 0/1

(zk)SNARKs

Tons of applications:
• ZK-Rollups/zkEVMs
• Verifiable Machine learning [ZEN, zkCNN, zkDT, Otti, etc…]
• Fighting image disinformation [NT16, BD22, KHSS22]
• Privacy-preserving smart-contracts/payment systems [Zcash, Zexe, Veri-ZEXE, etc…]

Key performance demands:
• Proving as fast as computing

• Small (e.g., logarithmic) proof size/verification cost for large circuits

Efficient transform from circuit statements to algebraic relations

Fast (e.g. linear-time) proving algorithm for the algebraic relations

(zk)SNARK = A succinct ZK proof showing that ∃𝒘 s.t. 𝐶(𝒙,𝒘) 	= 0

Multivariate-PolyIOP-based SNARKs
Multivariate

PolyIOP

Why multivariate PolyIOP? [CBBZ22, Setty19, etc]

• Prover performs a linear # of field ops
• No restriction on the field choice

Efficiency bottleneck – polynomial commitments:
• DLOG/Pairing-based PCS [KZG10/PST13, Bulletproofs, …]:

• expensive ECC operations
• PCS from tensor-based IOPPs [Brakedown, Ligero, BCG20, …]:

• expensive proof size/verification time

Multilinear
PCS

SNARKs

Adapt [BFS19, CHMMVW19] to the multivariate setting

Circuit
statement

R1CS/Plonkish/AIR
algebraic relations

Multivariate-PolyIOP-based SNARKs
Multivariate

PolyIOP

Multilinear
PCS

SNARKs

Adapt [BFS19, CHMMVW19] to the multivariate setting

Circuit
statement

R1CS/Plonkish/AIR
algebraic relations

FRI-based Multilinear PCS [KT23, CBBZ22, BCHO22, …]

Based on FRI Polynomial low-degree testing (FRI-IOPP)

Advantages:
• No expensive cryptographic ops
• Transparent and plausibly post-quantum secure
• Polylogarithmic proof size/verification

Disadvantages:
• Require FFT-friendly fields
• Extra uni-to-multivariate PCS compilation overhead

ECFFT[BCKL22] supports general fields
but not concretely efficient

Efficient Multilinear PCS
Question: Can we

(i) have a field-agnostic FRI-like IOPP, and
(ii) directly compile the IOPP to a multilinear PCS?

Why Field-Agnosticity?

Can use the field with the most efficient
CPU/hardware implementations

(e.g., Mersenne field, BabyBear field)

Avoid non-native field simulation in the circuit
(e.g., ECDSA signature verification circuit)

BaseFold: A new multilinear PCS

FRI
IOPPs/low-deg

tests

only support
Reed-Solomon Code

BaseFold
IOPPs

Support all
“Foldable” Linear Code

Generalize

Randomized
foldable code
for “any” fields

BaseFold
PCSs

Sumcheck

BaseFold Multilinear PCS:
• Support “arbitrary” fields!
• No uni-to-multivariate PCS compilation overhead
• Preserves other efficiency advantages of FRI IOPP

Related work:
• [ABN23]: IOPP for polynomial codes
• [BLNR22]: IOPP to algebraic geometry codes

Agenda

• IOPP from “foldable” linear codes

• Foldable linear codes over fast fields

• Efficient multilinear PCS compiler from BaseFold IOPPs

Agenda

• IOPP from “foldable” linear codes

• Foldable linear codes over fast fields

• Efficient multilinear PCS compiler from BaseFold IOPPs

IOPPs
oracle string 𝜋

P(𝜋) V

𝑚#

𝑐# ← F

……
……
𝑚$

𝑐$

Soundness:
if 𝜋 far from codewords,
V rejects w.h.p.

Complexity:
• P/V time
• 𝑞% +⋯+ 𝑞$

Completeness:
if 𝜋 is a codeword,
honest P succeeds

𝑞!
queries

𝑞"
queries

𝑞#
queries

Goal: check 𝜋 is close to a codeword E.g., checking 𝜋
are the evaluations of
a low-deg polynomial

FRI IOPPs
The evals 𝑓|% of oracle poly 𝑓(𝑋) in domain 𝐿 ⊆ 𝔽

E.g., 𝐿 = {2& -th root-of-unities}
Goal:
check deg 𝑓 ≤ 2$

P(𝜋) V
𝑓|3!
(#)

𝑐# ← 𝔽𝑓 𝑋 = 𝑓' 𝑋(+ 𝑋𝑓)(𝑋()

𝐿" = “half” of 𝐿
𝑓(") 𝑋 = 𝑓' 𝑋 + 𝑐"𝑓)(𝑋)

V query checks:
1. 𝑓(#) is a const poly
2. Sample random 𝑢(") ←$ 𝐿 and derive 𝑢(() , … , 𝑢(#) from 𝑢(")
3. ∀𝑖 ∈ [𝑘], 𝑓(-) consistent w/ 𝑓(-.") :

• 𝑓 - 𝑢(-) = 𝑓'
- 𝑢(-) + 𝑐-𝑓)

- 𝑢(-) on 𝑢(-) ∈ 𝐿-

……
𝑐$

𝑓(#) 𝑋 = 𝑓'
(#) 𝑋 + 𝑐#𝑓)

(#)(𝑋) 𝑓|3"
$𝑓(#.") 𝑋 = 𝑓'

(#) 𝑋(+ 𝑋𝑓)
(#)(𝑋()

deg 𝑓(") ≤ 2#."

Question: Can we
generalize beyond

RS Code?

𝔽 has to be FFT-friendly : (

e.g., 𝑓'
" 𝑢 obtained/interpolated given 𝑓|%(± 𝑢)

Foldable Linear Codes
“Foldable” Linear Codes:

• A family of linear codes with encoding algorithms EncG: 𝔽H
→ 𝔽IH#

GJ#

K

• Parameterized by a list of vectors {𝑡G,3	, 𝑡G,L ∈ 𝔽IH
#}G∈[K] s.t.∀𝑗:	𝑡G,3 𝑗 ≠ 𝑡G,L 𝑗

Question: How to generalize
FRI for any foldable codes?

Enc-(𝑚%)

Enc-(𝑚/)

+

𝑡-,%
∘ ||

Enc-(𝑚%)

Enc-(𝑚/)

+

𝑡-,/
∘()

Enc-1"(𝑚%||𝑚/)	: point eval form of 𝑐2- linear polynomials:
• The t-vectors are the evaluation points

Examples:
Reed-Solomon code, etc…

Enc-1"(𝑚%||𝑚/)	 =“Foldability” :

Enc-(𝑚%) & Enc-(𝑚/): coef form of the 𝑐2- linear polynomials

IOPPs from any Foldable Codes
Goal:
check 𝜋 “close” to
a codeword in 𝐶K

P(𝜋) V𝑐# ← 𝔽
Consistency check:
• 𝜋(")[𝑢(")] = 𝐸% 𝑢(") + 𝑐"𝐸/ 𝑢(")

for rand entries 𝑢(")

• 𝐸%// 𝑢 can be interpolated
given 𝜋%// 𝑢

By linearity, 𝜋(&) = Enc'(&(𝑚) + 𝑐&𝑚*) , “close” to 𝐶'(&

𝜋 = Enc3(𝑚%||𝑚/)	=	(𝜋%||𝜋/)	Enc3." 𝑚% = 𝐸%

𝐸/Enc3." 𝑚/ = 𝐸%

𝐸/

+

𝑡%
∘

𝐸%

𝐸/

+

𝑡/
∘

𝜋% = 𝜋/ =

𝜋(#) 𝐸%

𝐸/

=

+𝑐" ⋅

Agenda

• IOPP from “foldable” linear codes

• Randomized foldable linear codes over fast fields

• Efficient multilinear PCS compiler from BaseFold IOPPs

Randomized Foldable Code

Enc-(𝑚%)

Enc-(𝑚/)

+

𝑡-,%
∘

Enc-1"(𝑚%||𝑚/)	

||
Enc-(𝑚%)

Enc-(𝑚/)

+

𝑡-,/
∘()

Recall “Foldable” Linear Codes: Observation:
The code family is fixed after fixing
Enc$ and the t-vectors 𝑡%,', 𝑡%,(%)$

*

Our construction:
• 𝑡%,' ←$ (𝔽×)-.

4 , 𝑡%,(≔ −𝑡%,'
• Almost no field restrictions! (except 𝔽 > 1000)
• Trivial recursive encoding:

• O(𝑛 log 𝑛) F-ops w/ super small constant

Key Question:
Why does it have good

minimum relative distances?

Question:
How to set 𝑡' and 𝑡(for
• Good min-distance
• Field agnosticism

Minimum Distance Analysis
Goal: Prove EncG(𝑚) has very few zeros for any 𝑚 ≠ 0

Minimum Distance = Minimum (nonzero) Hamming Weight

Enc-1"(𝑚%||𝑚/)	

a1 a2 a3 a4 a5 a6 a7 a8 b1 b2 b3 b4 b5 b6 b7 b8

∘

+

∘

+

Enc-(𝑚%)

Enc-(𝑚/)

Enc%/0(𝑚'||𝑚() has

≥ 2𝐿	 + 𝛿	zeros w.p. ~ .5|67|

𝔽 8

Challenge: Need take union bound over all 𝔽 .|37| − 1 messages ⇒ large 𝛿 : (

The # of zeros in follows a Bernoulli distribution with parameter 𝑝 ≈ 1/|𝔽|

0 0 0 0xa6 xb6y y

0 0 0 0 0 0y y

0 0 0 0 0 0xx

Enc% has < 𝐿 zeros ⇒
Enc%/0(𝑚'||𝑚() has ≤ 2𝐿	red zeros

Minimum Distance Analysis
Goal: Prove EncG(𝑚) has very few zeros for any 𝑚 ≠ 0

Minimum Distance = Minimum (nonzero) Hamming Weight

0 0 xa6 y 0 0 xb6 y Enc-1"(𝑚%||𝑚/)	

The # of zeros in follows a Bernoulli distribution with parameter 𝑝 ≈ 1/|𝔽|

Observation: For many 𝑚 = 𝑚)||𝑚*, Enc+(𝑚)) and Enc+(𝑚*) have ≪ 𝐿 zeros

Question: Fix 𝑆 ⊆ 𝑐2+ , how many codewords are all zeros on 𝑆?

Pr[Enc%/0(𝑚'||𝑚() has 2𝐿	 + 𝛿 zeros] ~ .5|67|

𝔽 𝟐 𝑳;|𝑺| =8 ≪
.5|67|

𝔽 8

For any 𝑚 = 𝑚'||𝑚(, denote 𝑆 as the maximal subset s.t. Enc%(𝑚') 𝑆 = Enc%(𝑚() 𝑆 = 0|4|

fewer red zeros

Minimum Distance Analysis
Result:

𝛿 can be as small as 𝑂(37
567(𝔽)

)

Case |𝑺| ≥ 𝑳: Only Enc+(𝟎) are all zeros on 𝑆
Case	|𝑺| < 𝑳:	By Rank-Nullity Thm, there are at most ≈ 𝔽 𝑳(|𝑺| 	possible Enc+(�⃗�)

Question: Fix 𝑆 ⊆ 𝑐2+ , how many codewords are all zeros on 𝑆?

EncG(𝑚) 𝑆𝑚 Matrix map 𝐺

Kernel(𝐺[) = 0

|Kernel(𝐺)| ≤	?

Rank-Nullity Thm

EncG(𝑚) 𝑆′𝑚
Matrix map 𝐺 > ⊇ 𝐺

𝑆: = 𝐿

𝔽 𝑳^|𝑺|

Agenda

• IOPP from “foldable” linear codes

• Foldable linear codes over fast fields

• Efficient multilinear PCS compiler from BaseFold IOPPs

Multilinear PCS [KZG10,PST13]

Prover Verifier

commit(pp, f, 𝑟) ⇾ “short” Cf

pp, 𝒇∈ 𝔽?
(@") 𝑋" , … , 𝑋3 , 𝒓 pp

Binding: cannot output two valid openings (𝑓#, 𝑟#), (𝑓H, 𝑟H) for Cf.

pp ←	Setup(𝒅)

Multilinear PCS [KZG10,PST13]

Goal: “convince” V that 𝑓 𝑧 = 𝑦 and 𝑪𝒇 =commit(pp, 𝑓, 𝑟)

Eval is knowledge sound:
• V accepts ⇒ P “knows” 𝒇∈ 𝔽0

(1&) 𝑋&, … , 𝑋' , 𝒓 s.t. 𝑓 𝑧 = 𝑦 and 𝑪𝒇 =commit(pp, 𝑓, 𝑟)

Prover Verifier

proof 𝜋

𝒙 = (𝑝𝑝, 𝑪𝒇 , 𝑧, 𝑦), 𝒘 = (𝒇, 𝒓) 𝒙 = (𝑝𝑝, 𝑪𝒇 , 𝑧, 𝑦)

Evaluation phase

Accept/Reject

Multilinear PCS from BaseFold IOPPs
State-of-the-art:

FRI-IOPP Univariate
PCS

Multilinear
PCS

Examples:
Gemini, HyperPlonk,
ZeroMorph, etc

Tensor
IOPPs

Multilinear
PCS

Examples:
Brakedown, Ligero,
[Bootle et. al. 17], etc

Our construction:

BaseFold
IOPPs

Multilinear
PCS

sumcheck

Advantages:
- Field agnostic!
- 3x prover improvement over the
 uni-to-multi PCS compilation
- Logarithmic verification/proof size

fast V + “small” 𝜋 :)

not 𝔽-agnostic : (

fast P + 𝔽-agnostic :)

slow V + large 𝜋 : (

PCS Construction

Goal: Given 𝑧, 𝑠, “convince” V that 𝐶 = com(𝑓) and 𝑓 𝑧 = 𝑠 for some 𝑓

Commitment to 𝒇(𝑿𝟏, … , 𝑿𝒅):
The Merkle commitment 𝐶	to Enc 𝑓

𝑓 : coefficients of 𝑓(𝑋" , … , 𝑋3)

Multilinear Extension

Goal: “convince” V that 𝐶 = com(𝑓) and 𝑓 𝑧 = ∑=∈?B 𝑓@ �⃗� = 𝑠	

Evaluation proof:

𝑓C �⃗� ≔ 𝑓 �⃗� ⋅ 𝑒𝑞C⃗(�⃗�)

𝑒𝑞C⃗ �⃗� ≔8
-E"

3
[𝑧-𝑥- + 1 − 𝑧-𝑥-]Sum-Check claim

Sumcheck for Polynomials [LFKN92]

Prover Verifier

Goal: “convince” V that ∑=∈?B 𝑓 �⃗� = 𝑠	

ℎ3 𝑋 = ∑F∈H!"# 𝑓 𝑏, 𝑋 	
check ℎ3 0 + ℎ3 1 = 𝑠

𝑟3 ← 𝔽

check 𝑓 𝑟" , … , 𝑟3 = ℎ"(𝑟")

reduced claim:
∑I∈H!"# 𝑓 �⃗�, 𝑟3 = ℎ3(𝑟3)	

𝑟3." ← 𝔽

ℎ3." 𝑋 = ∑F∈H!"$ 𝑓 𝑏, 𝑋, 𝑟3 	
check ℎ3." 0 + ℎ3." 1 = ℎ3(𝑟3)

……
……
ℎ"

check ℎ" 0 + ℎ" 1 = ℎ((𝑟()

V only makes 1 query to oracle 𝑓

PCS Evaluation Proof
Prover Verifier

Goal: “convince” V that
𝐶 = com(𝑓) and ∑=∈?B 𝑓@ �⃗� = 𝑠	
𝑓C �⃗� ≔ 𝑓 �⃗� ⋅ 𝑒𝑞C⃗(�⃗�)

Committed Oracle: C = Enc(𝑓)

𝑓 : coefficients of 𝑓(𝑋", … , 𝑋3)

𝑓(3.") = 𝑓% + 𝑟3𝑓/ is
coeffs of 𝑓(𝑋", … , 𝑋3.", 𝑟3)

𝑓C 𝑟" , … , 𝑟3 = 𝑓 ! ⋅ 𝑒𝑞C⃗(𝑟) 	= ℎ"(𝑟")

Oracle: 𝜋(") = Enc" 𝑓(")

Oracle: 𝜋(!) = Enc! 𝑓(!)

Oracle: 𝜋(3.") = Enc3." 𝑓(3.")

Evaluation binding and
knowledge soundness
are nontrivial to prove

Check our paper!

check 𝑓 𝑟" , … , 𝑟3 = ℎ"(𝑟")
Another PCS Eval query

Do we make any progress?

ℎ3 𝑋 check ℎ3 0 + ℎ3 1 = 𝑠

𝑟3 ← 𝔽
reduced claim:
∑I∈H!"# 𝑓C �⃗�, 𝑟3 = ℎ3(𝑟3)	

𝑟3." ← 𝔽
……

𝑟" ← 𝔽

ℎ3." 𝑋

ℎ" 𝑋

Reduced goal: “convince” V that
𝐶(3.") = com(𝑓(3.")) and
∑I∈H!"# 𝑓C

(3.") �⃗� = ℎ3(𝑟3)	

Run IOPP. VerifyJ,K(!"#),…,K(#)
Consistency chk:

Evaluation Binding
Goal: “convince” V that ∃𝑓: 	𝐶 ≈ com(𝑓) and 𝑓 𝑧 = ∑K∈M! 𝑓 �⃗� 𝑒𝑞N(�⃗�) = 𝑠	

Step 1: IOPP
soundness

𝐶 is “close” to a codeword, i.e.,
𝐶 ≈ Enc 𝑓 for some unknown 𝑓

Step 2: Sumcheck
soundness

∑K∈M! 𝑓 �⃗� 𝑒𝑞N(�⃗�) = 𝑠	 ?

Q1: How do we know that 𝜋(O) ≈ EncO 𝑓(𝑟) ?
• Round oracles 𝜋 +

+PO
'

 are all “close” to codewords w.h.p.
• Suppose not, then ∃𝑘: 𝜋 QR& ≈S Enc(𝑓 QR&) while 𝜋 Q ≈S Enc(𝑔 Q)
• By consistency chk, 𝜋 Q can’t be too far from fold 𝜋 QR& ≈S Enc(𝑓 Q)

Q2: How to extract the knowledge of 𝑓 in poly-time?
• Nontrivial as our code is not efficiently error-correct decodable : (

𝑓(#1") ≔ 𝑓(𝑋" , … , 𝑋#1" , 𝑟#1(, … , 𝑟3)

Contradiction!

Two codewords are
far from each other

(𝛿 < unique decoding radius)

Hold on!
Only if 𝜋(O) ≈ EncO 𝑓(𝑟)

Knowledge Soundness
Goal: Find polynomial 𝑓: 	𝐶 ≈ com(𝑓) and 𝑓 𝑧 = ∑K∈M! 𝑓 �⃗� 𝑒𝑞N(�⃗�) = 𝑠	

ExtractorP*

(𝑟" ∈ 𝔽3 , 𝑣" ∈ 𝔽) (𝑟- , 𝑣-) (𝑟(! , 𝑣(!)… …

… …

By a predicate forking lemma, with overwhelming probability:
• For all 𝑖 ∈ [23], 𝑣- = 𝑓 𝑟- = 𝑓, coef 𝑟- (by evaluation binding property)

• coef 𝑟- ≔ (∏ME"..3 𝑟- 𝑗 F')
F∈ !," ! ∈ 𝔽(

!

-E"

(!

 are linearly independent

An expected-poly-time forking algorithm
given the oracle access to P*

Can recover 𝑓 by
Gaussian Elimination!

Given P* that succeeds w/ a noticeable probability, construct

(rand chals, P*’s claimed eval)
from accepted transcripts

A system of 23
indep linear equations

Summary & Future Work
Summary
§ Generalize FRI IOPP to work for any “foldable” linear codes

§ Fast & field-agnostic foldable linear codes

§ Fast multilinear PCS from BaseFold IOPP for foldable codes

Open questions
§ Linear-time encodable foldable codes

§ Field-agnostic Maximum Distance Separable (MDS) foldable codes

§ Generalize BaseFold IOPP to broader classes of codes (e.g., [BLNR22, ABN23])

§ Combine with the “Binius” [DP23] trick for polynomials with small coefficients

§ Better PCS soundness proof

