BaseFold: Fast Field-agnostic PCS from Foldable Codes

Hadas Zeilberger Yale Binyi Chen Stanford Ben Fisch

Yale

(zk)SNARKs

(**zk**)**SNARK** = A succinct ZK proof showing that $\exists w$ s.t. C(x, w) = 0Preprocess(pp, C) π $V_{(vk_c, x)} \rightarrow 0/1$

Requirements for π :

- **Completeness**: honest P can compute valid π
- Knowledge soundness: P* knows valid w if it can generate valid π
- Succinctness: $|\pi| \ll |w|$ and fast to verify
- Zero knowledge: π hide the witness w

(zk)SNARKs

(**zk**)**SNARK** = A succinct ZK proof showing that $\exists w$ s.t. C(x, w) = 0

Tons of applications:

- ZK-Rollups/zkEVMs
- Verifiable Machine learning [ZEN, zkCNN, zkDT, Otti, etc...]
- Fighting image disinformation [NT16, BD22, KHSS22]
- Privacy-preserving smart-contracts/payment systems [Zcash, Zexe, Veri-ZEXE, etc...]

Key performance demands:

- Efficient transform from circuit statements to algebraic relations
- Proving as fast as computing -

Fast (e.g. linear-time) proving algorithm for the algebraic relations

• *Small* (e.g., logarithmic) proof size/verification cost for *large* circuits

Multivariate-PolyIOP-based SNARKs

Efficiency bottleneck – polynomial commitments:

- DLOG/Pairing-based PCS [KZG10/PST13, Bulletproofs, ...]:
 - expensive ECC operations
- PCS from tensor-based IOPPs [Brakedown, Ligero, BCG20, ...]:
 - expensive proof size/verification time

Why multivariate PolyIOP? [CBBZ22, Setty19, etc]

- Prover performs a linear # of field ops
- No restriction on the field choice

Multivariate-PolyIOP-based SNARKs

Advantages:

• No expensive cryptographic ops

Require **FFT-friendly** fields

- Transparent and plausibly post-quantum secure
- Polylogarithmic proof size/verification

Disadvantages:

٠

ECFFT[BCKL22] supports general fields but not concretely efficient

• Extra uni-to-multivariate PCS compilation overhead

Adapt [BFS19, CHMMVW19] to the multivariate setting

Efficient Multilinear PCS

<u>Question:</u> Can we (i) have a **field-agnostic** FRI-like IOPP, and (ii) directly compile the IOPP to a multilinear PCS?

Why Field-Agnosticity?

Avoid **non-native** field simulation in the circuit (e.g., ECDSA signature verification circuit)

Can use the field with the most efficient CPU/hardware implementations (e.g., Mersenne field, BabyBear field)

BaseFold: A new multilinear PCS

BaseFold Multilinear PCS:

• Support "arbitrary" fields!

Related work:

- [ABN23]: IOPP for polynomial codes
- No uni-to-multivariate PCS compilation overhead
- Preserves other efficiency advantages of FRI IOPP
- [BLNR22]: IOPP to algebraic geometry codes

Agenda

- IOPP from "foldable" linear codes
- Foldable linear codes over fast fields
- Efficient multilinear PCS compiler from BaseFold IOPPs

Agenda

- IOPP from "foldable" linear codes
- Foldable linear codes over fast fields
- Efficient multilinear PCS compiler from BaseFold IOPPs

Foldable Linear Codes

"Foldable" Linear Codes:

FRI for any foldable codes?

- A family of *linear* codes with encoding algorithms $\left\{ \operatorname{Enc}_{i} : \mathbb{F}^{2^{i}} \to \mathbb{F}^{c2^{i}} \right\}_{i=1}^{d}$
- Parameterized by a list of vectors $\{\vec{t}_{i,L}, \vec{t}_{i,R} \in \mathbb{F}^{c2^i}\}_{i \in [d]}$ s.t. $\forall j: \vec{t}_{i,L}[j] \neq \vec{t}_{i,R}[j]$

Enc_i(\vec{m}_L) & Enc_i(\vec{m}_R): coef form of the $c2^i$ linear polynomia Enc_{i+1}($\vec{m}_L || \vec{m}_R$): point eval form of $c2^i$ linear polynomials:

• The t-vectors are the evaluation points

IOPPs from any Foldable Codes

Agenda

- IOPP from "foldable" linear codes
- Randomized foldable linear codes over fast fields
- Efficient multilinear PCS compiler from BaseFold IOPPs

Randomized Foldable Code

Our construction:

•
$$\vec{t}_{i,L} \leftarrow_{\$} (\mathbb{F}^{\times})^{c2^{i}}, \vec{t}_{i,R} \coloneqq -\vec{t}_{i,L}$$

- Almost no field restrictions! (except $|\mathbb{F}| > 1000$)
- Trivial recursive encoding:
 - $O(n \log n)$ F-ops w/ super small constant

Key Question:

Why does it have good minimum relative distances?

<u>Challenge</u>: Need take union bound over all $|\mathbb{F}|^{2|\vec{m}_L|} - 1$ messages \Rightarrow large δ : (

Minimum Distance Analysis

Question: Fix $S \subseteq [c2^i]$, how many codewords are all zeros on S?

Result: **Minimum Distance Analysis** δ can be as small as $O(\frac{|\vec{m}_L|}{\log(|\mathbf{F}|)})$ **<u>Question</u>**: Fix $S \subseteq [c2^i]$, how many codewords are all zeros on S? **Case** $|S| \ge L$: Only Enc_{*i*}($\vec{0}$) are all zeros on S **Case** |S| < L: By Rank-Nullity Thm, there are at most $\approx |\mathbb{F}|^{(L-|S|)}$ possible $\operatorname{Enc}_i(\vec{x})$ Matrix map G $|\text{Kernel}(G)| \leq ? |\mathbb{F}|^{(L-|S|)}$ \vec{m} $\operatorname{Enc}_{i}(\vec{m})[S]$ Rank-Nullity Thm Matrix map $G' \supseteq G$ \vec{m} $Kernel(G') = \{0\}$ $\operatorname{Enc}_{i}(\vec{m})[S']$ |S'| = L

Agenda

- IOPP from "foldable" linear codes
- Foldable linear codes over fast fields
- Efficient multilinear PCS compiler from BaseFold IOPPs

Binding: cannot output two valid openings (f_1, r_1) , (f_2, r_2) for C_f .

Multilinear PCS [KZG10, PST13]

Evaluation phase Goal: "convince" V that $f(\vec{z}) = y$ and $C_f = \underline{commit}(pp, f, r)$

Multilinear PCS from BaseFold IOPPs

State-of-the-art:

PCS Construction

Commitment to $f(X_1, ..., X_d)$: The Merkle commitment *C* to $\text{Enc}(\vec{f})$

 \vec{f} : coefficients of $f(X_1, \dots, X_d)$

Evaluation proof:

<u>Goal</u>: Given \vec{z}, s , "convince" V that C = com(f) and $f(\vec{z}) = s$ for some f

Goal: "convince" V that
$$C = \operatorname{com}(f)$$
 and $f(\vec{z}) = \sum_{x \in B_d} f_z(\vec{x}) = s$
Sum-Check claim $f_z(\vec{x}) \coloneqq f(\vec{x}) \cdot eq_{\vec{z}}(\vec{x})$
 $eq_{\vec{z}}(\vec{x}) \coloneqq \prod_{i=1}^d [z_i x_i + (1 - z_i x_i)]$

Sumcheck for Polynomials [LFKN92]

V only makes 1 query to oracle fGoal: "convince" V that $\sum_{x \in B_d} f(\vec{x}) = s$ check $f(r_1, ..., r_d) = h_1(r_1)$ Prover <u>Verifier</u> $h_d(X) = \sum_{b \in B_{d-1}} f(b, X)$ check $h_d(0) + h_d(1) = s$ reduced claim: $r_d \leftarrow \mathbb{F}$ $\sum_{x \in B_{d-1}} f(\vec{x}, r_d) = h_d(r_d)$ $h_{d-1}(X) = \sum_{b \in B_{d-2}} f(b, X, r_d)$ check $h_{d-1}(0) + h_{d-1}(1) = h_d(r_d)$ $r_{d-1} \leftarrow \mathbb{F}$ h_1 check $h_1(0) + h_1(1) = h_2(r_2)$

PCS Evalu	lation Proof	<u>Goal</u>: "convince" V that $C = \operatorname{com}(f)$ and $\sum_{x \in B_d} f_z(\vec{x}) = s$
_	\vec{f} : coefficients of $f(X_1, \dots, X_d)$	$f_{z}(\vec{x}) \coloneqq f(\vec{x}) \cdot eq_{\vec{z}}(\vec{x})$
Prover	Committed Oracle: $C = Enc(f)$	Verifier
_	$h_d(X)$	check $h_d(0) + h_d(1) = s$
reduced claim: $\sum_{x \in B_{d-1}} f_z(\vec{x}, r_d) = h_d(r_d)$	$r_d \leftarrow \mathbb{F}$	check $f(r_1,, r_d) = h_1(r_1)$
$\vec{f}^{(d-1)} = \vec{f}_L + r_d \vec{f}_R \text{ is}$ coeffs of $f(X_1, \dots, X_{d-1}, r_d)$	Oracle: $\pi^{(d-1)} = \operatorname{Enc}_{d-1}(\vec{f}^{(d-1)})$	Do we make any progress?
Evaluation binding and knowledge soundness are nontrivial to prove	$r_{d-1}(\mathbf{X})$ $r_{d-1} \leftarrow \mathbb{F}$	Reduced goal: "convince" V that $C_{(d-1)} = \operatorname{com}(f^{(d-1)})$ and
	Oracle: $\pi^{(1)} = \text{Enc}_1(\vec{f}^{(1)})$	$\sum_{x \in B_{d-1}} f_z^{(d-1)}(\vec{x}) = h_d(r_d)$
	$r \leftarrow \mathbb{F}$	Consistency chk:
	Oracle: $\pi^{(0)} = \text{Enc}_0(\vec{f}^{(0)})$	$ \begin{array}{c} & \text{Run IOPP. Verify}^{C,\pi^{(d-1)},,\pi^{(1)}} \\ & $

Evaluation Binding

<u>Goal</u>: "convince" V that $\exists f: C \approx \operatorname{com}(f)$ and $f(\vec{z}) = \sum_{x \in B_d} f(\vec{x}) eq_z(\vec{x}) = s$ C is "close" to a codeword, i.e., **IOPP** Step 1: $C \approx \operatorname{Enc}(\vec{f})$ for **some unknown** fsoundness Sumcheck $\sum_{x \in B_d} f(\vec{x}) eq_z(\vec{x}) = s$? Hold on! Step 2: soundness Only if $\pi^{(0)} \approx \text{Enc}_0(f(\vec{r}))$ **Q1:** How do we know that $\pi^{(0)} \approx \text{Enc}_0(f(\vec{r}))$? • Round oracles $\{\pi^{(i)}\}_{i=0}^d$ are all "close" to codewords w.h.p. $f^{(k+1)} \coloneqq f(X_1, \dots, X_{k+1}, r_{k+2}, \dots, r_d)$ • Suppose not, then $\exists k: \pi^{(k+1)} \approx_{\delta} \operatorname{Enc}(f^{(k+1)})$ while $\pi^{(k)} \approx_{\delta} \operatorname{Enc}(g^{(k)})$ Two codewords are far from each other

• By consistency chk, $\pi^{(k)}$ can't be too far from $fold(\pi^{(k+1)}) \approx_{\delta} Enc(f^{(k)})$

Contradiction!

(δ < unique decoding radius)

Q2: How to extract the knowledge of f in **poly-time**?

• Nontrivial as our code is not efficiently error-correct decodable : (

Knowledge Soundness

Summary & Future Work

Summary

- Generalize FRI IOPP to work for any "foldable" linear codes
- Fast & field-agnostic foldable linear codes
- Fast multilinear PCS from BaseFold IOPP for foldable codes

Open questions

- Linear-time encodable foldable codes
- Field-agnostic Maximum Distance Separable (MDS) foldable codes
- Generalize BaseFold IOPP to broader classes of codes (e.g., [BLNR22, ABN23])
- Combine with the "Binius" [DP23] trick for polynomials with small coefficients
- Better PCS soundness proof