BaseFold: Fast Field-agnostic PCS
from Foldable Codes

Hadas Zeilberger Binyi Chen Ben Fisch
Yale Stanford Yale

(zk)SNARKs

(zk)SNARK = A succinct ZK proof showing that 3w s.t. C(x,w) =0

Preprocess(pp, C)

Pk,) . \VA

Requirements for m:

« Completeness: honest P can compute valid

* Knowledge soundness: P* knows valid w if it can generate valid
* Succinctness: || < |w| and fast to verify

« Zero knowledge: hide the withess w

(zk)SNARKs

(zk)SNARK = A succinct ZK proof showing that 3w s.t. C(x,w) =0

Tons of applications:

e ZK-Rollups/zkEVMs

* Verifiable Machine learning [ZEN, zkCNN, zkDT, Otti, etc...]

* Fighting image disinformation [NT16, BD22, KHSS22]

* Privacy-preserving smart-contracts/payment systems [Zcash, Zexe, Veri-ZEXE, etc...]

Key performance demands: Efficient transform from circuit statements to algebraic relations
* Proving as fast as computing{

Fast (e.g. linear-time) proving algorithm for the algebraic relations

* Small (e.g., logarithmic) proof size/verification cost for /arge circuits

Multivariate-PolylOP-based SNARKSs

Circuit R1CS/Plonkish/AIR Multivariate
statement algebraic relations PolylOP

SNARKSs

Multilinear
PCS

Adapt [BFS19, CHMMVW19] to the multivariate setting

Efficiency bottleneck — polynomial commitments: Why multivariate PolylOP? [c88722, setty19, etc]
* DLOG/Pairing-based PCS kzc10/PsT13, Bulletproofs, ...): * Prover performs a linear # of field ops

* expensive ECC operations * No restriction on the field choice
* PCS from tensor-based IOPPs [Brakedown, Ligero, BCG20, ...]:

* expensive proof size/verification time

Multivariate-PolylOP-based SNARKSs

Circuit R1CS/Plonkish/AIR Multivariate

statement algebraic relations PolylOP

- SNARKSs
FRI-based Multilinear PCS [KT23, CBBZ22, BCHO22, ..]

Based on FRI Polynomial low-degree testing (FRI-IOPP) Multilinear

PCS

AdvantageS: Adapt [BFS19, CHMMVW19] to the multivariate setting
* No expensive cryptographic ops

* Transparent and plausibly post-quantum secure
* Polylogarithmic proof size/verification

Disadvantages: ECFFT[BCKL22] supports general fields
« Require FFT-friendly fields but not concretely efficient

* Extra uni-to-multivariate PCS compilation overhead

Efficient Multilinear PCS

Question: Can we
() have a field-agnostic FRI-like IOPP, and
(ii) directly compile the IOPP to a multilinear PCS?

Why Field-Agnosticity?

Av0|d non-native field simulation in the C|rcu|t
(e.g., ECDSA signature verification circuit)

Can use the field with the most efficient
CPU/hardware implementations
(e.g., Mersenne field, BabyBear field)

BaseFold: A new multilinear PCS

Randomized
foldable code
for “any” fields

Generalize S heck
- I/ZlRI : ﬂ BaseFold & BaseFold
s/low-deg IOPPs PCSs
tests
only support Support all
Reed-Solomon Code “Foldable” Linear Code
BaseFold Multilinear PCS: Related work:
* Support “arbitrary” fields! « [ABN23]: IOPP for polynomial codes

* No uni-to-multivariate PCS compilation overhead -+ [BLNR22]: IOPP to algebraic geometry codes
* Preserves other efficiency advantages of FRI IOPP

Agenda

* |OPP from “foldable” linear codes
* Foldable linear codes over fast fields

* Efficient multilinear PCS compiler from BaseFold IOPPs

Agenda

* |OPP from “foldable” linear codes

IOPPS Goal: check rr is close to a codeword E.g., checking

are the evaluations of

q1
¢y < F querles querles

Pmr) .. / y

M . Completeness:
if T is a codeword,
< honest P succeeds

Complexity: Soundness:
e P/Vtime if T far from codewords,

g0l + -+ + gl V rejects w.h.p.

The evals f|, of oracle poly f(X) in domain L € F

FRI IOPPS E.g., L = {2"™-th root-of-unities} Goal
I

OO = LX) + X[, ¢ < F
& X) = X 1Jo X
fRX) = fo(X) + ¢ fo(X) fii? L, = “half” of L deg(f(l)) < k-t
>
Pm) — - V
Ck
P00 = £90) + XN) ()
FO@) = £ + a0 JiLi >
Vaquery checks: F has to be FFT-friendly : (

1. % is a const poly Question: Can we
- 2 Sample ra?l;jom u® 4 L arzfj fl)erlve u®@, .., u® from u® generalize beyond
'3 Vie [k], f' consistent w/ f : RS Code?

o fO@D) = £DUD) + ¢ £D WD) onu® € L,

e.g., fe(l)(u) obtained/interpolated given f, (+vu)

Foldable Linear Codes

“Foldable” Linear Codes:

i i@
A family of linear codes with encoding algorithms {Enci: F? — [F¢? }
i=1

- Parameterized by a list of vectors {¢;, ,t; g € [Fczi}ie[d] st.Vj: L [j] # tirlj]

“Foldability” : Enc;,, (M, ||mg) =
Enc; (m,) Enc;(m),)
+ +
Examples: i i g
Reed-Solomon code, etc... ° ©

Enc; (1mg) Enc; (1mg)

. . (m (mMR): ff 24 i I ial
Question: How to generalize Enc;(m;) & Enc;(imy): coef form of the c2' linear polynomials

FRI for any foldable codes? Enc;,, (M, ||mR) : point eval form of c2! linear polynomials:
* The t-vectors are the evaluation points

IOPPs from any Foldable Codes

T = Encd(mL”mR) = (ﬁL”ﬁR)

Ency_(m,) = E,
Encd_l(TTiR) = ER ﬁL = EL 7T[)R =
+
)
Er
() C1 < IF
ﬁ:’(l) =
+C1 *

By linearity, 7™ = Ency_ (M, + ¢;img) , “close” to Cq_4

Goal:
check T “close” to

a codeword in Cy4

\)

Consistency check:

o FOWD] = B, [u®] + ¢, Ba[u®]
for rand entries u(
EL/R [u] can be interpolated
given 77, /g [u]

Agenda

 Randomized foldable linear codes over fast fields

Randomized Foldable Code

Recall “Foldable” Linear Codes: Observation:
The code family is fixed after fixing

Enc;,q (1, ||mig) Y
Enc, and the t-vectors {ti,L, ti'R}i=0

Enc; (m)) Enc; (m))
+ + Question:
7 2 How to set ¢, and ty for
iL tir o
0 ° ¢ Good min-distance
Enc; (z) Enc; (i) * Field agnosticism

Our construction: .
- . . Key Question:

* i < ([FX).CZ yLiR = —_ti,Ll Why does it have good
» Almost no field restrictions! (except |F| > 1000) minimum relative distances?

* Trivial recursive encoding:
* O(nlogn) F-ops w/ super small constant

Minimum Distance Analysis .., imy nas < 24 e

(my||img) has < 2L red zeros
Enc; 4 (M, ||mg) has

N N — ZC|mL|
Goal: Prove Enc;(m) has very few zeros foranym # 0 = 2L +§zerosw.p. ~—=3

Minimum Distance = Minimum (nonzero) Hamming Weight

0 0 Xag

y | 0]O0 xbe y Enc;,, (M, ||1g)

The # of zeros in

follows a Bernoulli distribution with parameter p = 1/|F]|

0 0 0 y | oo 0 y | Enc;(m})
+ +

dq dar as da dsg dg ay asg b1 b2 b3 b4 b5 b6 b7 bg

0 |o X ol ol o X 0 | Enc;(ig)

Challenge: Need take union bound over all |F|2/MLl — 1 messages = large & : (

Minimum Distance Analysis

Goal: Prove Enc; (i) has very few zeros for any i # 0

Minimum Distance = Minimum (nonzero) Hamming Weight

01| O Xag y | OO0 Xbg y Enc;, (M, ||mg)

The # of zeros in follows a Bernoulli distribution with parameter p = 1/|F]| fewer red zeros

Observation: For many m = m ||mg, Enc;(m;) and Enc;(my) have « L zeros

For any m = 1, ||Mg, denote S as the maximal subset s.t. Enc; (711,)[S] = Enc; (inig)[S] = 0!

— 2¢Imy| 2¢Imy|
Pr[Enc;,q(m;||mg) has 2L + & zeros] ~ [FEA-D+5 1G4 P

Question: Fix S € [czi], how many codewords are all zeros on S?

Result:

Minimum Distance Analysis | s can e os smaias 067

g(F[)

Question: Fix S € [czi], how many codewords are all zeros on S?

| Case |S| = L: Only Enci((_f) are all zeroson S i
' Case |S| < L: By Rank-Nullity Thm, there are at most ~ |F|£~I5D possible Enc; (%) l

i MEIXIERE . Ency()[S] Kernel(G)l <? |F|*~15D
Rank-Nullity Thm

- Matri G'2G — /

m M =22 Enc;(m)[S’] Kernel(G') = {0}

IS' =L

Agenda

* Efficient multilinear PCS compiler from BaseFold IOPPs

Multilinear PCS [kzG10,PST13]

= pp < Setup(d)
h@d

commit(pp, f, r) = “short” C¢

»
»

Prover

Verifier

Binding: cannot output two valid openings (f; 1), (f2, 12) for Cx.

Multilinear PCS [kzG10,PST13]

Evaluation phase | Goal: “convince” V that f(2) = y and Cf =commit(pp, f, r)

x:(pprCfJZ'y)r W:(er) x:(pp;CfJZ'y)

proof

Accept/Reject

Prover Verifier

Eval is knowledge sound:
* V accepts = P “knows” f€ IFz(fl)[Xl, ., Xgl,r st f(Z2) =y and Cp =commit(pp, f, r)

Multilinear PCS from BaseFold IOPPs

State-of-the-art:

e " Examples: fastV + “small” m :)
FRI-IOPP Un::\)/?:rslate Mu:ilcll:r;ear Gemini, HyperPlonk,
ZeroMorph, etc not F-agnostic : (
Examples: fast P + [F-agnostic :)
Tensor VIEIEIREEIN Brakedown, Ligero,
IOPPs PCS [Bootle et. al. 17], etc

slow V + large m : (

Our construction:

Advantages:

- Field agnostic!

V| - 3x prover improvement over the
PCS uni-to-multi PCS compilation

- Logarithmic verification/proof size

BaseFold sumcheck

IOPPs

PCS Construction

Commitment to f(X,, ..., X):
The Merkle commitment C to Enc(f)

f : coefficients of f (X, ..., X3)

Evaluation proof:

Goal: Given Z,s, “convince” V that C = com(f) and f(Z) = s for some f

Multilinear Extension

Goal: “convince” Vthat C = com(f) and f(Z) = Yyep, fz(¥) = s | () =/f() ;ieqz(f)
Sum-Check claim €4:(%) = ni_l[zixi + (1 = zx;)]

Sumcheck for Polynomials [LFKN92]

Prover

reduced claim:
erBd_lf(f; Ta) = hq(ra)

Goal: “convince” Vthat ¥, cp, f(¥) = s

Ra(X) = Syen, f(B,X)

Ty <« F

hd—l(X) = ZbEBd_Z f(b,X,T'd)

Tg-1 < F

V only makes 1 query to oracle f
check f(T'l, ...,rd) = hl(T'l)

Verifier

check hy(0) + h (1) = s

check hy_1(0) + hy_1 (1) = hg(rg)

check hy(0) + h (1) = hy(1y)

o Goal: “convince” V that
PCS Evaluation Proof |/, " aas.c £@ s

f: coefficients of f (X3, ..., X4) ;) = f(X) - eqz(%)
Prover Committed Oracle: C = Enc(f) Verifier
hq(X) ‘ check hy(0) + hy(1) = s
reduced claim: F
- «— —
ZxEBd_le(x, T'd) = hd (T'd) < rd check f(rlr "'Ird) - hl(rl)
_ 2(d— Another PCS Eval query
S S . c(d=1) — (d-1)
fOD =fi+rafris Oracle: 7 Ency-y (f) Do we make any progress?

coeffs of f (X1, ..., Xq-1,7q) hd_1(X)

> Reduced goal: “convince” V that
Tg_1 < F Cla-1) = com(f@~1) and

S —————— Yreny L@ = ha(ra)

Evaluation binding and Oracle: 7™ = Enc, (fu))

: knowledge soundness hy(X)

: are nontrivial to prove

v

Consistency chk:

< F]
Run I0PP. Verify ¢ -m

£,y 1) = O - eqy () = by (1)

A

Oracle: 7(®) = Enco(f(o))

v

Evaluation Binding

Goal: “convince” Vthat 3f: C =~ com(f) and f(2) = Y ep, f(X)eq,(X) = s

IOPP C is “close” to a codeword, i.e.,
Step 1: R
soundness C ~ Enc(f) for some unknown f
. Sumcheck 5 S\ |
Step 2: Yxepy, f(Heq,(X) =s ? Hold on!
soundness

only if (9 = Ency(f (¥))
Q1: How do we know that 7(® =~ Ency(f (#))?

d
« Round oracles {n(‘)}i_o are all “close” to codewords W.h.p. | fF&+D = F(X,, ., Xiest, Tesnr s Ta)

« Suppose not, then 3k: t*+V =5 Enc(f **V) while 7 =5 Enc(g®) Two codewords are
- By consistency chk, ®) can’t be too far from fold(m**) ~5 Enc(f)] far from each other

Contradiction!

. , T
Q2: How to extract the knowledge of f in poly-time~ (5 < unique decoding radius)

* Nontrivial as our code is not efficiently error-correct decodable : (

Knowledge Soundness

Goal: polynomial f: C = com(f) and f(2) = ¥ ep, f(X)eq,(X) = s

Given P* that succeeds w/ a noticeable probability, construct

An expected-poly-time forking algorithm

EXtraCtorP* given the oracle access to P’
(r; € F%, v, € F) (,v)) (Tyd, Vyd)

(rand chals, P’s claimed eval)

By a predicate forking lemma, with overwhelming probability: from accepted transcripts

e Foralli € [2%],v; = f(r}) = (f, coef(7})) (by evaluation binding property)
+ {coef() = (210 1)

A system of 2¢

d)? : : . . .
beo,13¢ € [F? }) are linearly independent indep linear equations
, =

5
Can recover f by
Gaussian Elimination!

Summary & Future Work

Summary

Generalize FRI IOPP to work for any “foldable” linear codes
Fast & field-agnostic foldable linear codes

Fast multilinear PCS from BaseFold IOPP for foldable codes

Open questions

Linear-time encodable foldable codes

Field-agnostic Maximum Distance Separable (MDS) foldable codes
Generalize BaseFold IOPP to broader classes of codes (e.g., [BLNR22, ABN23))
Combine with the “Binius” [DP23] trick for polynomials with small coefficients

Better PCS soundness proof

