

LatticeFold

Memory-Efficient Proving at Scale

Binyi Chen

Joint work with Dan Boneh

Stanford University

ZK-SNARKs: Advanced Applications

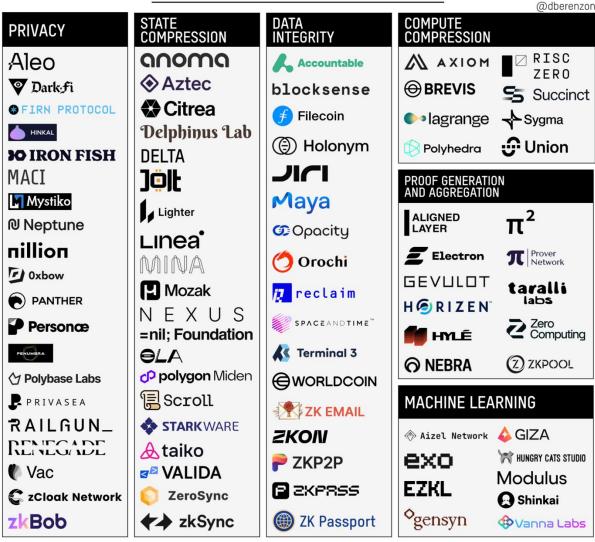
Applications

- zkVM/zkML
- Image/Video Provenance
- ZK Wallet/Passport
- Data Availability
- Decentralized Storage
-

Common Theme

Large-scale computation

VERIFIABLE COMPUTE LANDSCAPE



ZK-SNARKs: Advanced Applications

zkBob

Applications

- zkVM/zkML
- Image/Video Provenance
- ZK Wallet/Passport
- Data Availability
- Decentralized Storage
-

Common Theme

Large-scale computation

Design Requirements

Scalable prover + post-quantum security

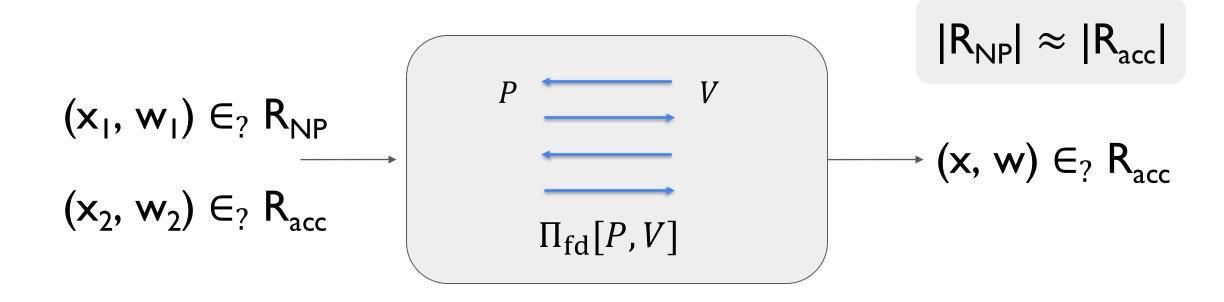
VERIFIABLE COMPUTE LANDSCAPE @dberenzon COMPUTE COMPRESSION STATE COMPRESSION DATA INTEGRITY **PRIVACY** RISC ZERO anoma Aleo M AXIOM **Accountable** ♠ Aztec Dark-fi **⊕** BREVIS blocksense Succinct Citrea ♠ FIRN PROTOCOL Filecoin ↓ Sygma lagrange **Delphinus Lab** hinkal (E) Holonym **Union** Polyhedra **30** IRON FISH **DELTA** JICI MACI]©lt PROOF GENERATION AND AGGREGATION Mystiko Mystiko Maya Lighter ALIGNED LAYER **@** Neptune **Opacity** Linea* піШоп **Electron** T Prover Network (Orochi MINA 0xbow GEVULOT Mozak taralli 7 reclaim PANTHER H@RIZEN NEXUS SPACEANDTIME™ Personæ Zero Computing HYLÉ =nil: Foundation Terminal 3 **OLA ONEBRA** (Z) ZKPOOL polygon Miden M Polybase Labs **WORLDCOIN** Scroll PRIVASEA MACHINE LEARNING ZK EMAIL RAILGUN_ **STARKWARE ZKON △** GIZA Aizel Network RENEGADE <u></u> taiko HUNGRY CATS STUDIO **ZKP2P** exo Vac **VALIDA** Modulus **EZKL P**ZKPRSS zCloak Network ZeroSync ♠ Shinkai

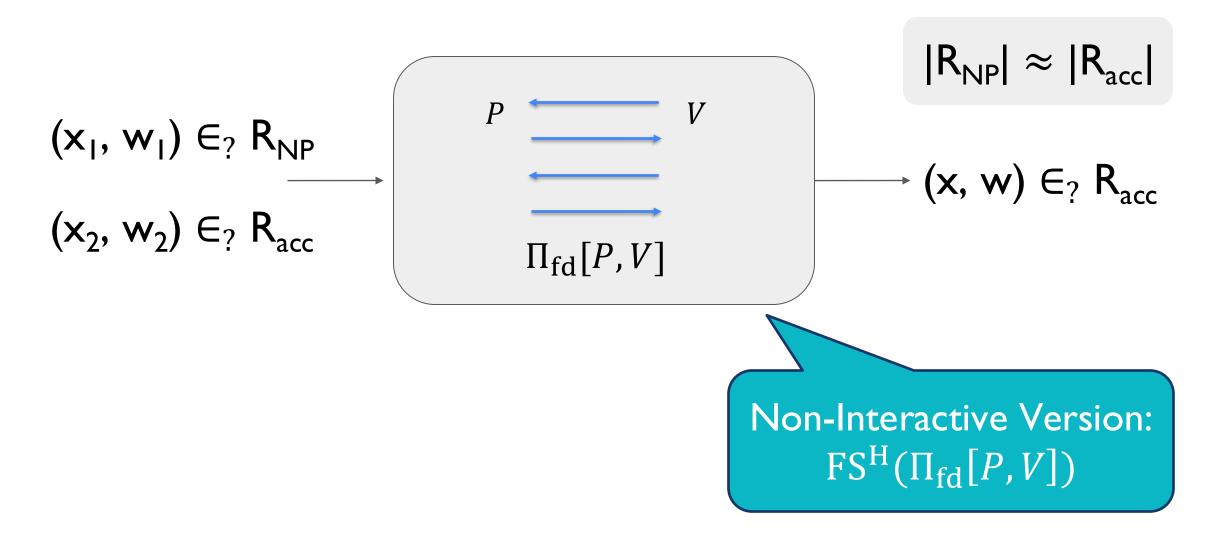
ZK Passport

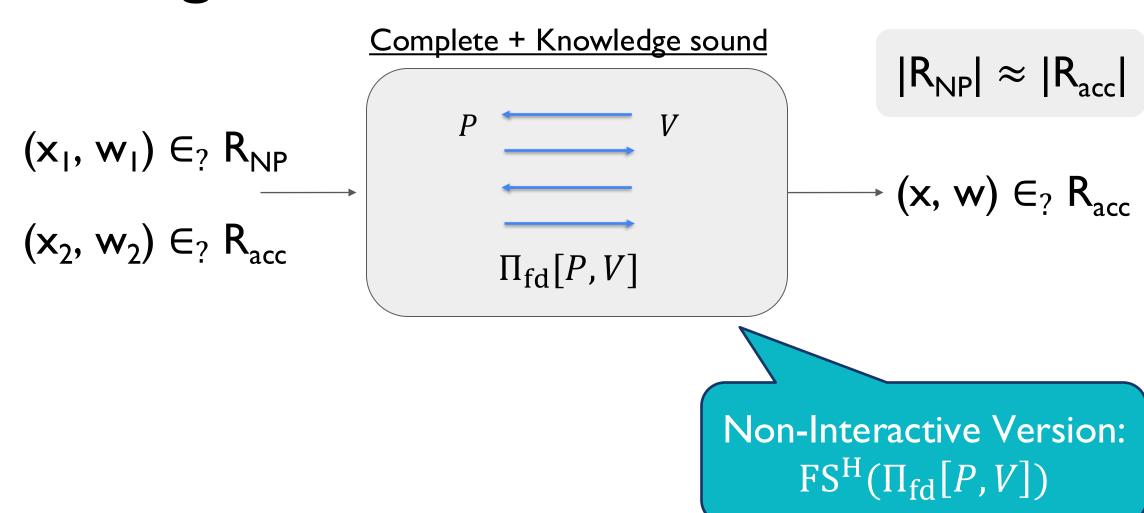
★ zkSync

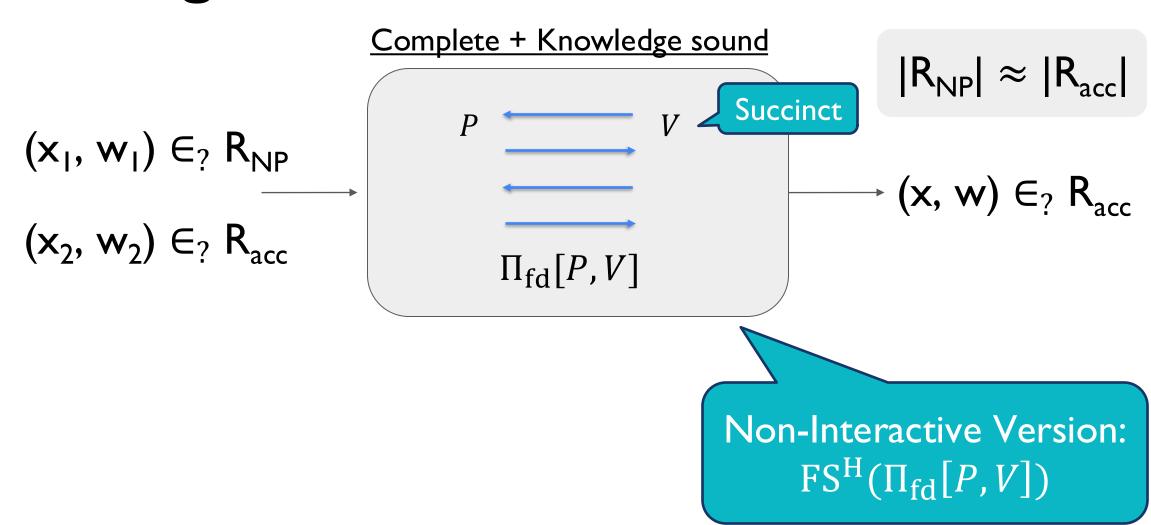
Vanna Labs

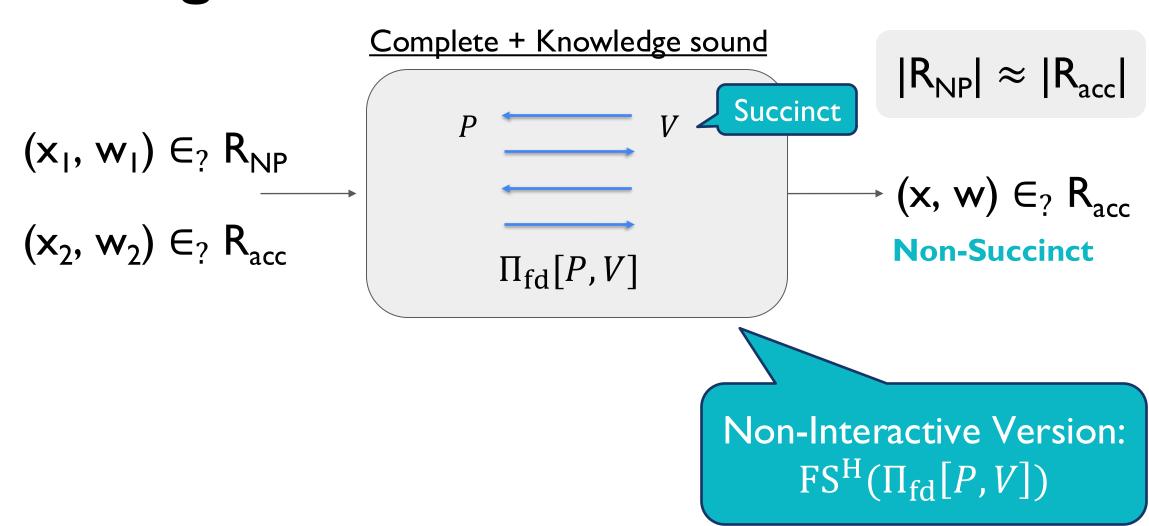
ogensyn :

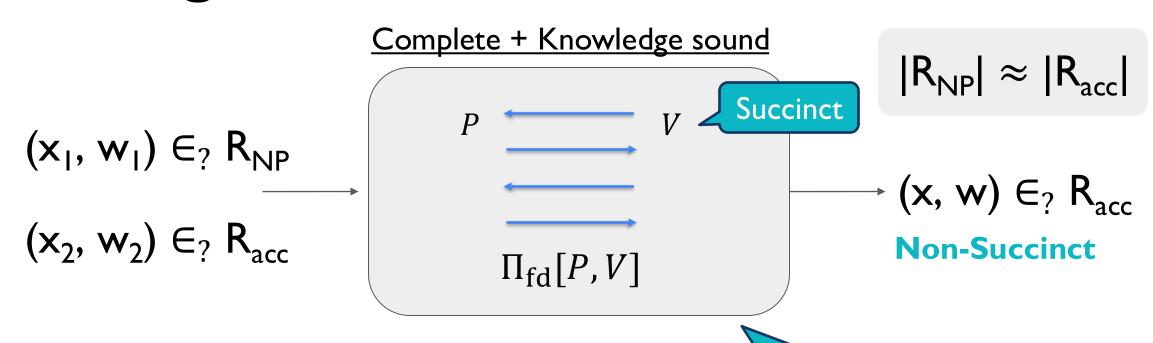








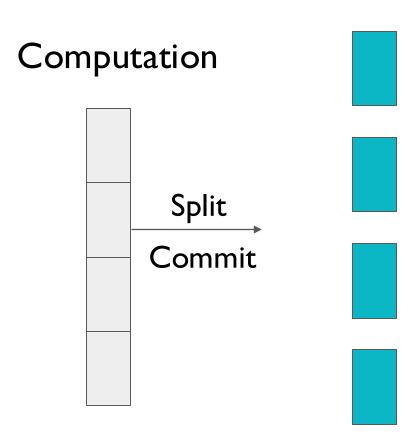


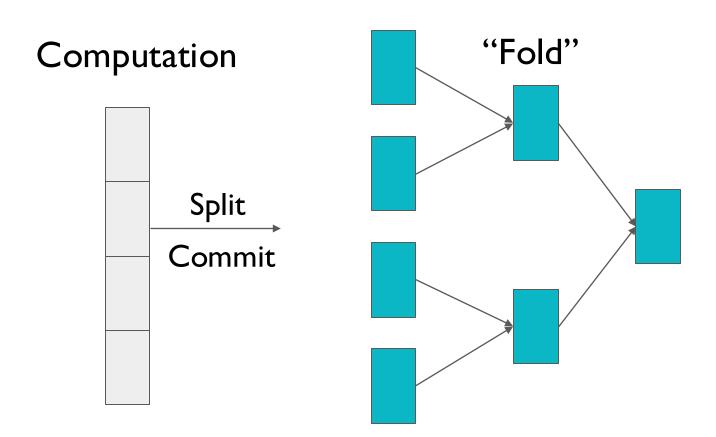


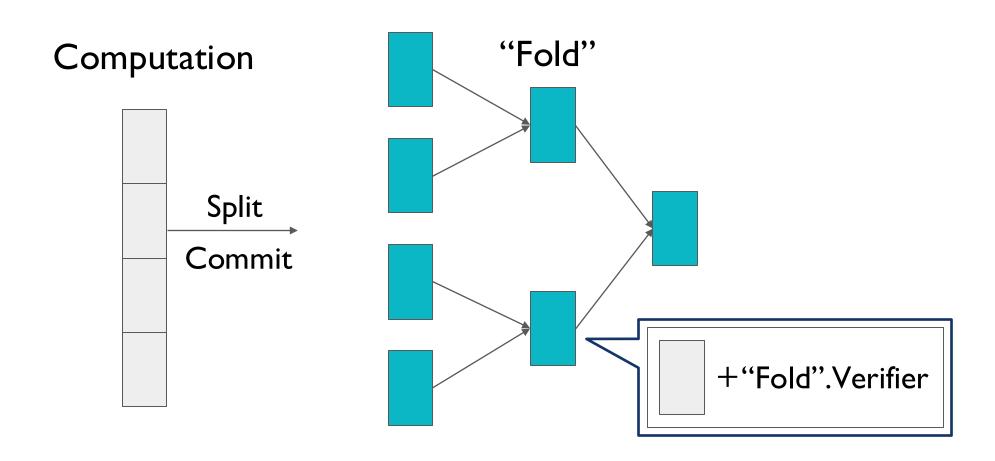
Advantages:

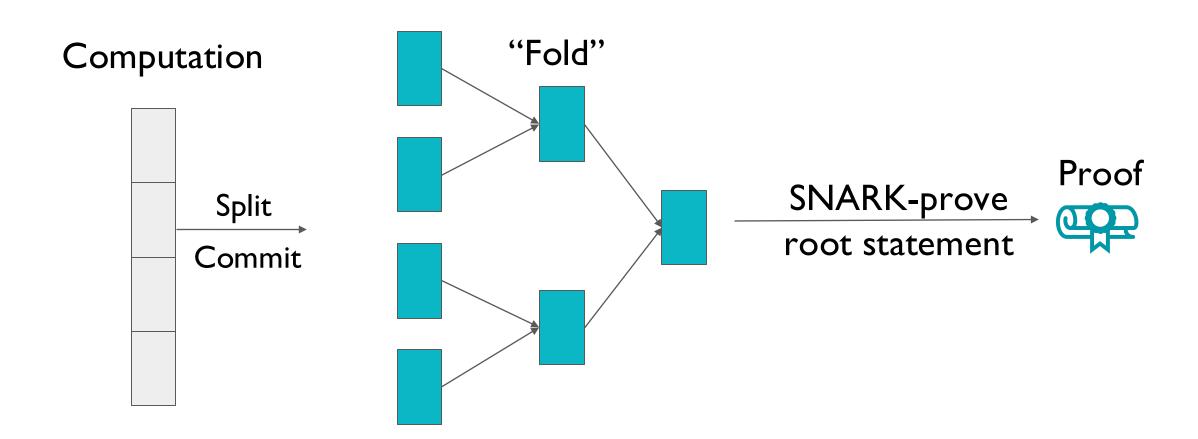
- Much faster than SNARKs
- Boost SNARK efficiency

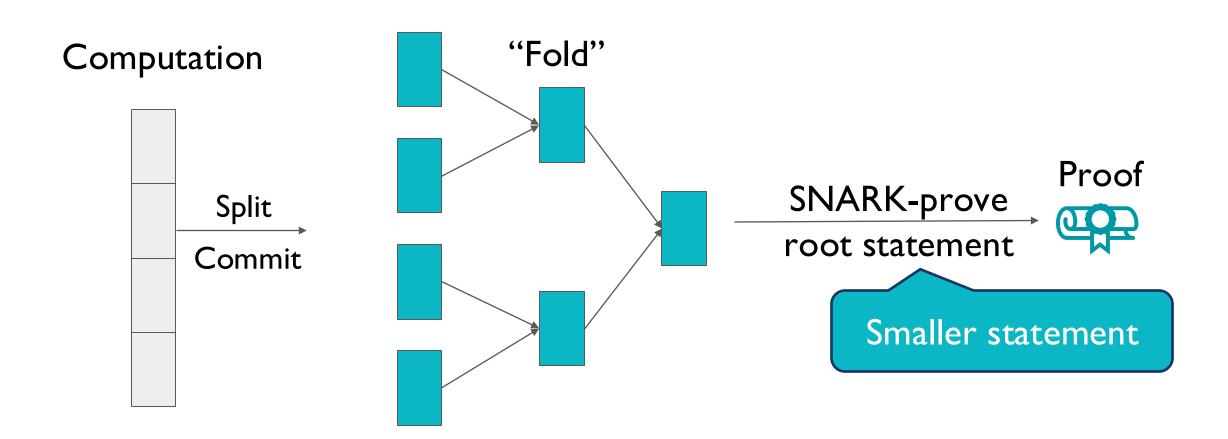
Non-Interactive Version: $FS^{H}(\Pi_{fd}[P, V])$

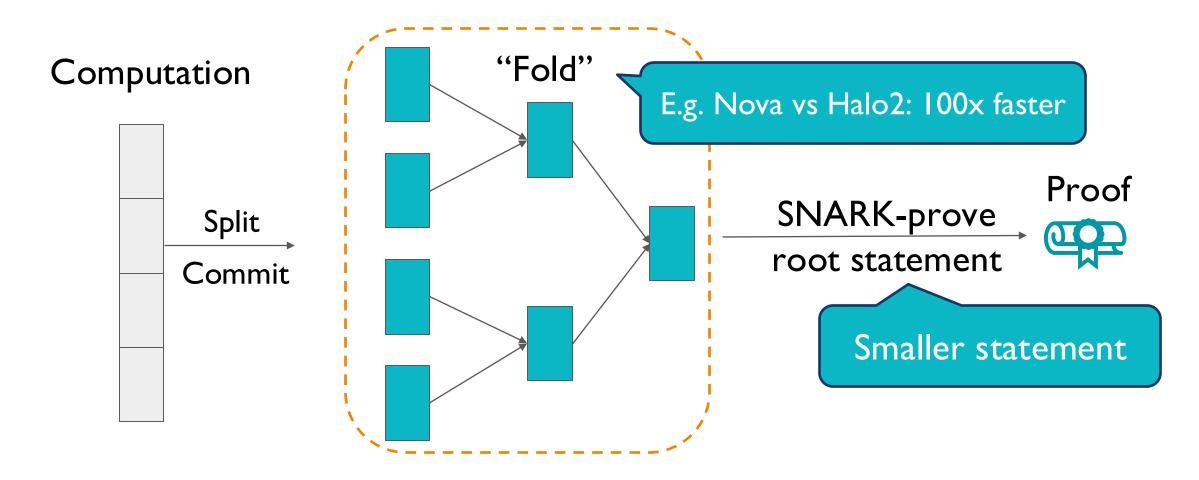


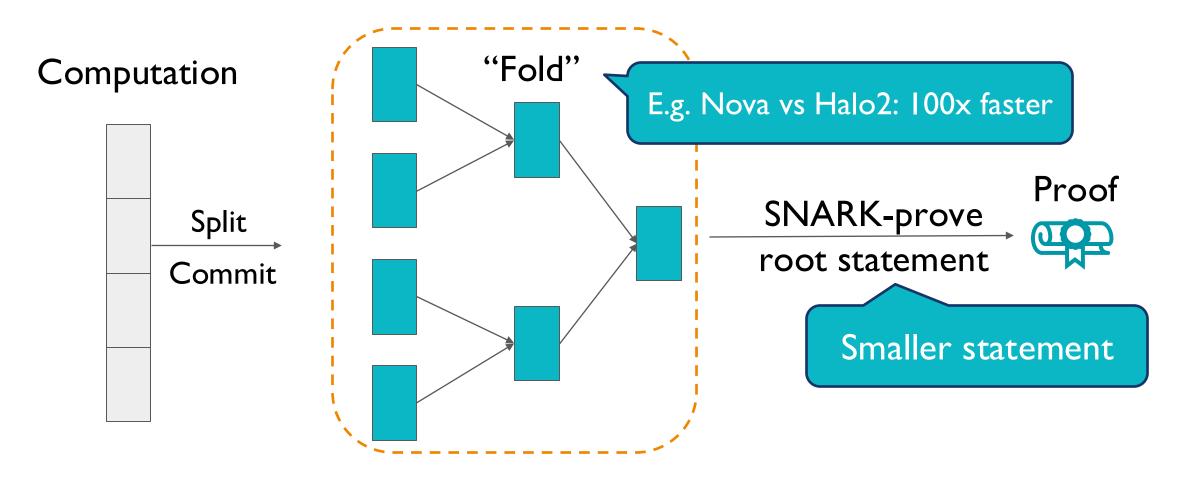






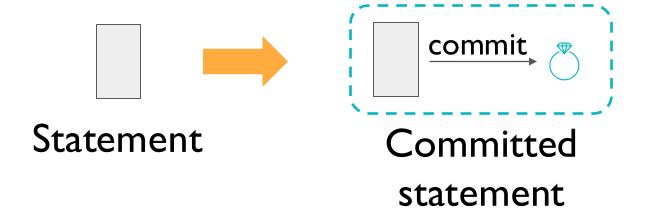


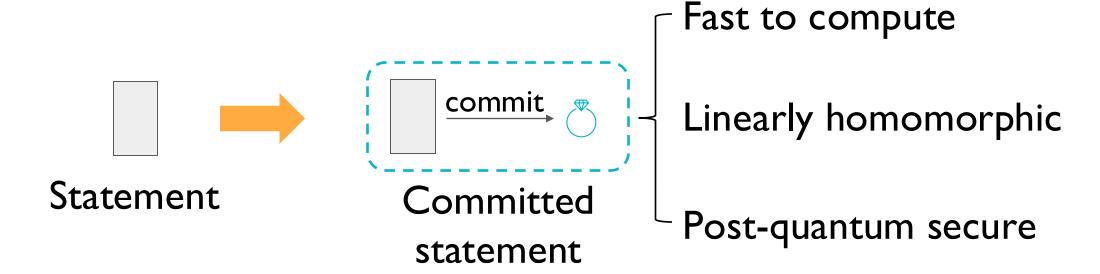


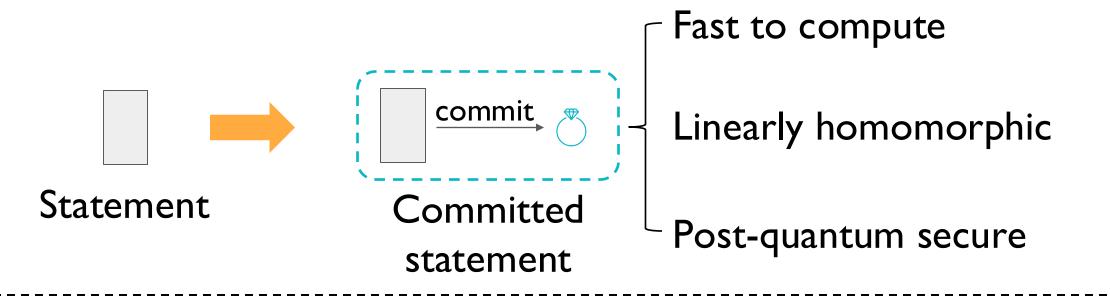


Qs: Which commitment should we use?

Statement



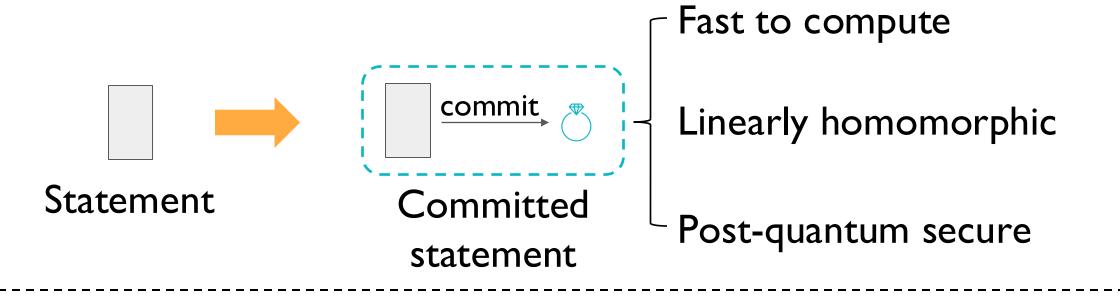




Before: Pedersen commitments [KST'21, BCLMS'21, BC'23, KS'23...]

Pros:

Linearly homomorphic



Before: Pedersen commitments [KST'21, BCLMS'21, BC'23, KS'23...]

Pros:

Linearly homomorphic

- Pre-quantum
- Require expensive cycle-curves

Q: A folding scheme from a faster and PQ-secure commitment?

Our Contribution

Main Result

- The first plausibly <u>PQ-secure</u> folding scheme from <u>Ajtai hashes</u>
- Commitment space ≈ Witness space ⇒ Native verifier circuit

Our Contribution

Main Result

- The first plausibly PQ-secure folding scheme from Ajtai hashes
- Commitment space ≈ Witness space ⇒ Native verifier circuit

Follow-up Works:

- LF+ [BC'25], Symphony [C'25]
- Neo [NS'25]
- RoK-and-Roll [KLNO'25]
- Lova [FKNP'24]

Our Contribution

Main Result

- The first plausibly PQ-secure folding scheme from Ajtai hashes
- Commitment space ≈ Witness space ⇒ Native verifier circuit

Follow-up Works:

- LF+ [BC'25], Symphony [C'25]
- Neo [NS'25]
- RoK-and-Roll [KLNO'25]
- Lova [FKNP'24]

Hash-based Schemes:

[BMNW'25a, BMNW'25b, BCFW25, BMMS'25...]

- Based on Merkle-commitments
- PQ-secure and fast committing
- More expensive verifier circuit

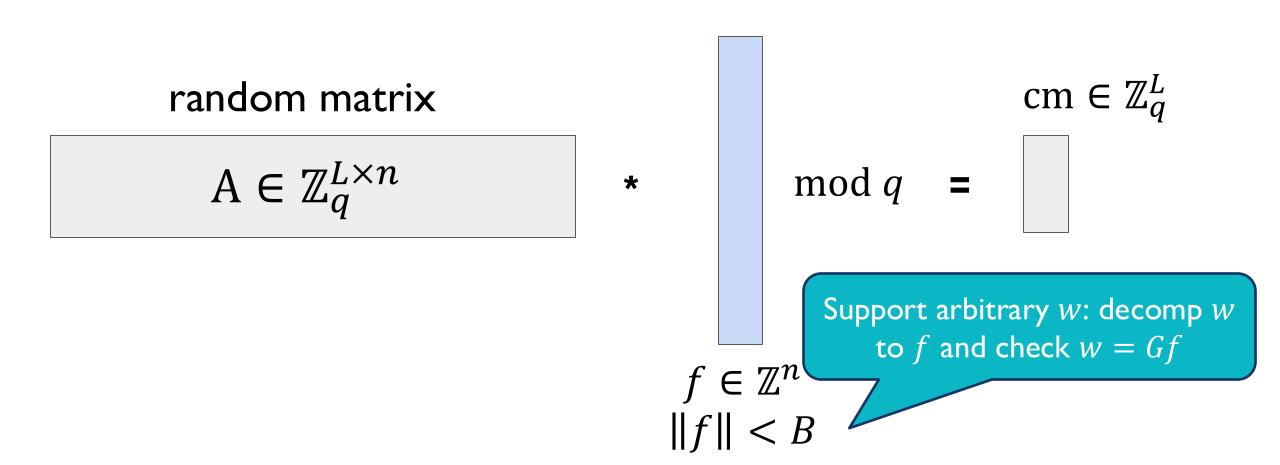
$$\mathbf{A} \in \mathbb{Z}_q^{L \times n}$$

* mod q

$$cm \in \mathbb{Z}_q^L$$

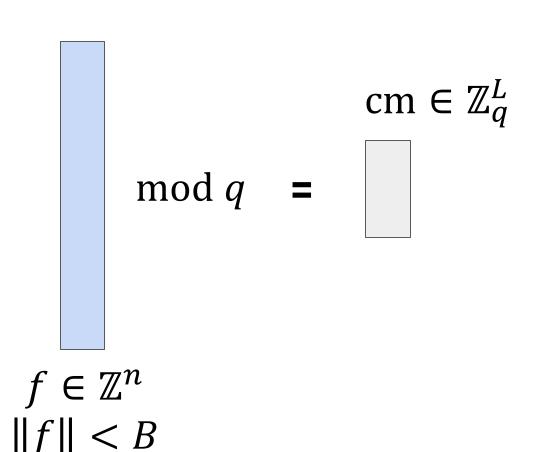
$$f \in \mathbb{Z}^n$$

$$||f|| < E$$



"Semi"-linearly homomorphic random matrix

$$\mathbf{A} \in \mathbb{Z}_q^{L \times n}$$



random matrix

$$\mathbf{A} \in \mathbb{Z}_q^{L \times n}$$

*

 $cm \in \mathbb{Z}_q^L$

mod q =

>30x faster than Pedersen

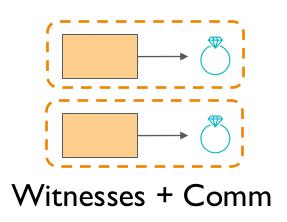
SWIFFT [LMPR'08]

A faster variant over $R_q!$

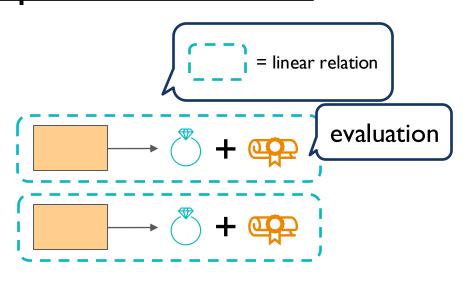
$$f \in \mathbb{Z}^n$$

$$||f|| < B$$

Q: Plug to existing folding templates?



Step I: Commit | Step 2: Linearization



Step 1: Commit | Step 2: Linearization | Step 3: Fold |

Witnesses + Comm | Step 3: Fold |

Witnesses + Comm | Step 3: Fold |

Witnesses + Comm | Step 3: Fold |

Step 3: Fold |

Step 3: Fold |

Step 3: Fold |

Step 3: Fold |

Step 3: Fold |

Step 3: Fold |

Step 3: Fold |

Step 3: Fold |

Step 3: Fold |

Step 3: Fold |

Step 3: Fold |

Step 3: Fold |

Step 3: Fold |

Step 3: Fold |

Step 3: Fold |

Step 3: Fold |

Step 3: Fold |

Step 3: Fold |

Step 3: Fold |

Step 3: Fold |

Step 3: Fold |

Step 3: Fold |

Step 3: Fold |

Step 3: Fold |

Step 3: Fold |

Step 3: Fold |

Step 3: Fold |

Step 3: Fold |

Step 3: Fold |

Step 3: Fold |

Step 3: Fold |

Step 3: Fold |

Step 3: Fold |

Step 3: Fold |

Step 3: Fold |

Step 3: Fold |

Step 3: Fold |

Step 3: Fold |

Step 3: Fold |

Step 3: Fold |

Step 3: Fold |

Step 3: Fold |

Step 3: Fold |

Step 3: Fold |

Step 3: Fold |

Step 3: Fold |

Step 3: Fold |

Step 3: Fold |

Step 3: Fold |

Step 3: Fold |

Step 3: Fold |

Step 3: Fold |

Step 3: Fold |

Step 3: Fold |

Step 3: Fold |

Step 3: Fold |

Step 3: Fold |

Step 3: Fold |

Step 3: Fold |

Step 3: Fold |

Step 3: Fold |

Step 3: Fold |

Step 3: Fold |

Step 3: Fold |

Step 3: Fold |

Step 3: Fold |

Step 3: Fold |

Step 3: Fold |

Step 3: Fold |

Step 3: Fold |

Step 3: Fold |

Step 3: Fold |

Step 3: Fold |

Step 3: Fold |

Step 3: Fold |

Step 3: Fold |

Step 3: Fold |

Step 3: Fold |

Step 3: Fold |

Step 3: Fold |

Step 3: Fold |

Step 3: Fold |

Step 3: Fold |

Step 3: Fold |

Step 3: Fold |

Step 3: Fold |

Step 3: Fold |

Step 3: Fold |

Step 3: Fold |

Step 3: Fold |

Step 3: Fold |

Step 3: Fold |

Step 3: Fold |

Step 3: Fold |

Step 3: Fold |

Step 3: Fold |

Step 3: Fold |

Step 3: Fold |

Step 3: Fold |

Step 3: Fold |

Step 3: Fold |

Step 3: Fold |

Step 3: Fold |

Step 3: Fold |

Step 3: Fold |

Step 3: Fold |

Step 3: Fold |

Step 3: Fold |

Step 3: Fold |

Step 3: Fold |

Step 3: Fold |

Step 3: Fold |

Step 3: Fold |

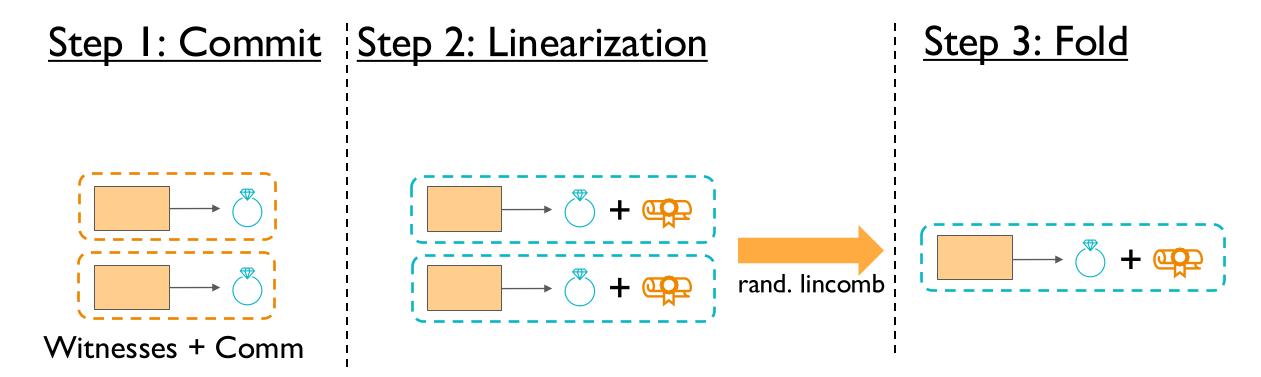
Step 3: Fold |

Step 3: Fold |

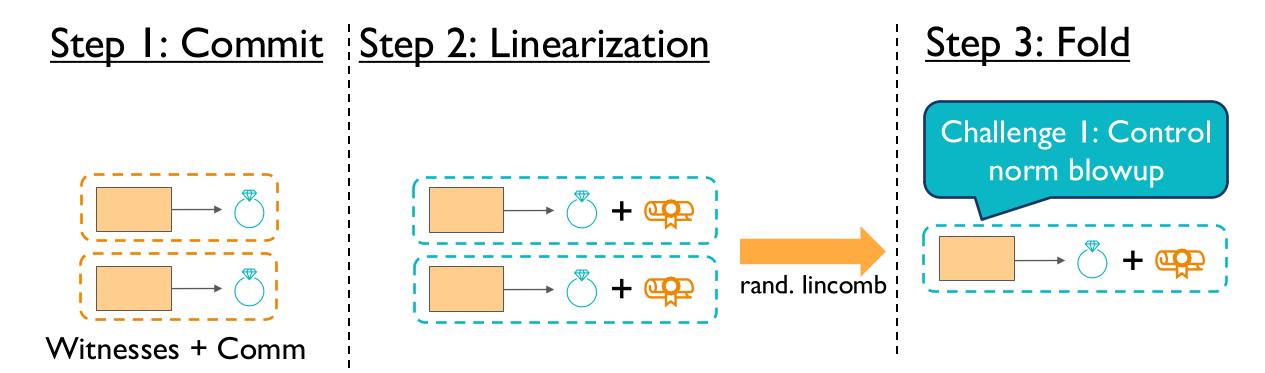
Step 3: Fold |

Step 3: Fold |

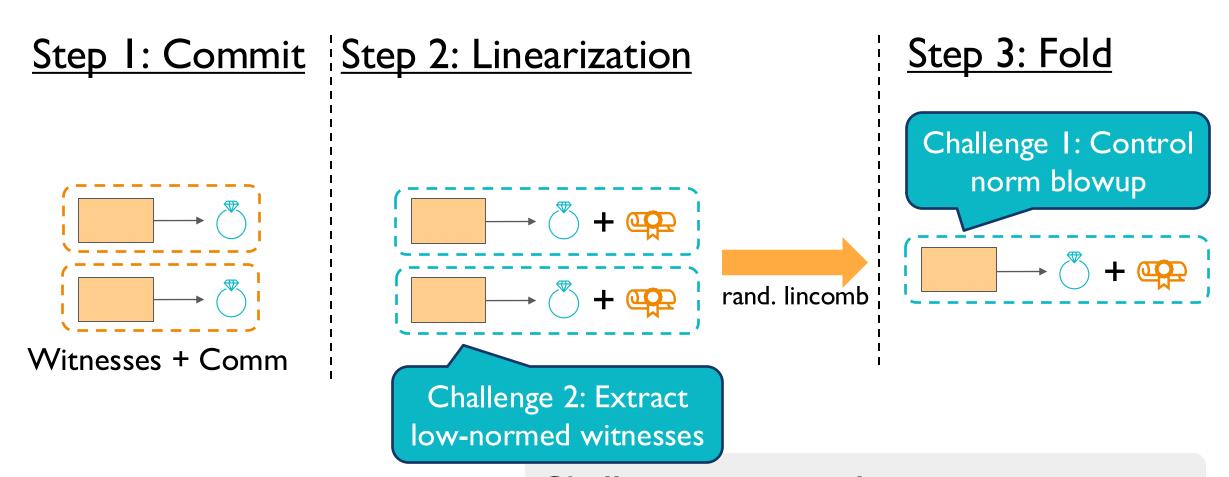
Step 3: Fold



Challenges in using lattice commitments



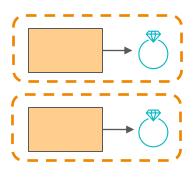
Challenges in using lattice commitments

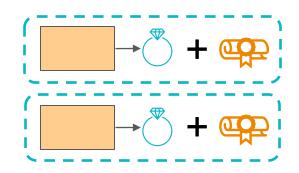


Challenges in using lattice commitments

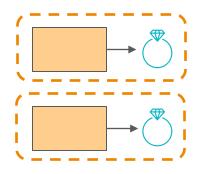
A New Lattice-Folding Framework

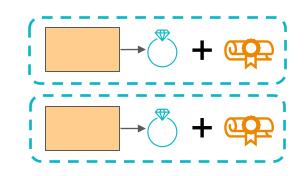
Step I: Commit Step 2: Linearize

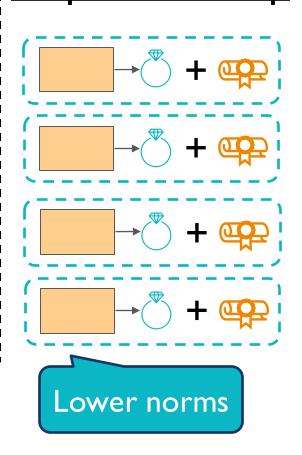




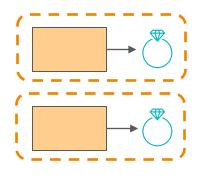
Step I: Commit Step 2: Linearize | Step 3: Decomp

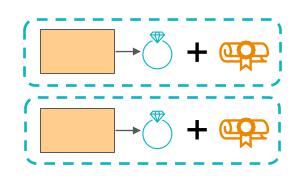


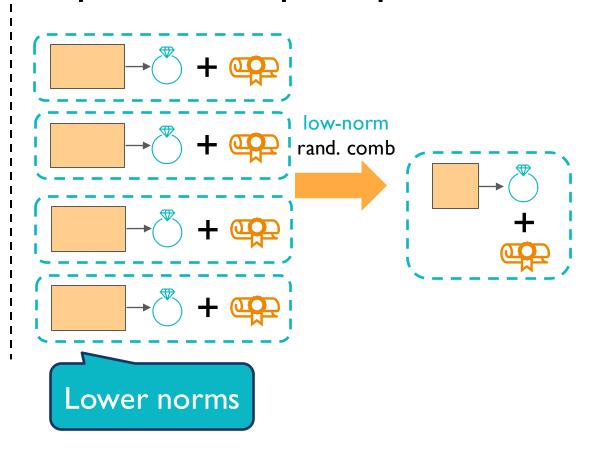




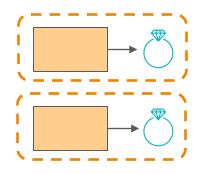
Step I: Commit Step 2: Linearize | Step 3: Decomp Step 4: Fold

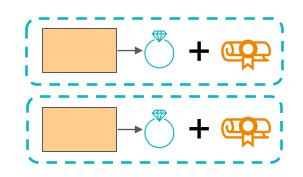


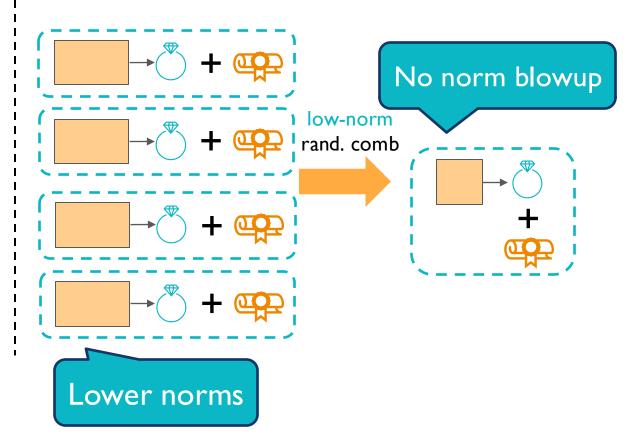




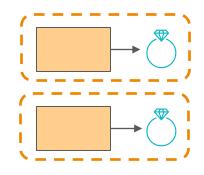
Step I: Commit Step 2: Linearize | Step 3: Decomp Step 4: Fold

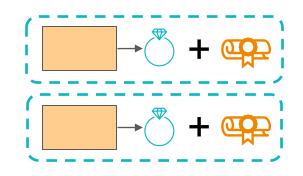






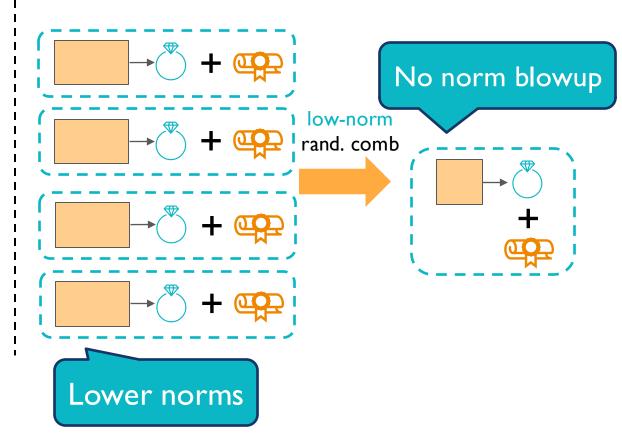
Step I: Commit Step 2: Linearize | Step 3: Decomp Step 4: Fold



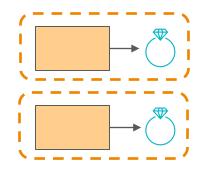


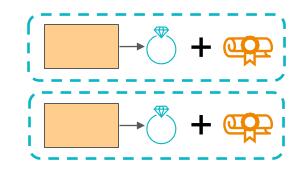
Missing Piece:

Range-proof for input witnesses



Step I: Commit Step 2: Linearize | Step 3: Decomp Step 4: Fold

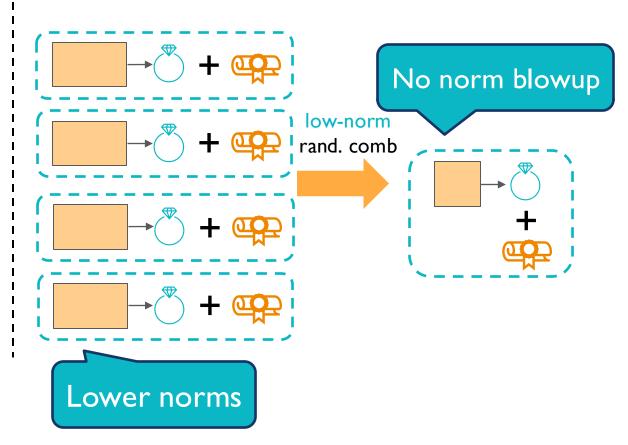




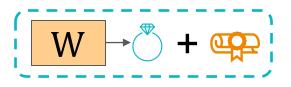
Missing Piece:

Range-proof for input witnesses

Challenge: Sublinear verification

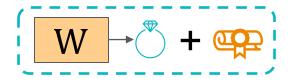


Range statement:



 $W \rightarrow C + C$ where each entry of W is in [0, b)

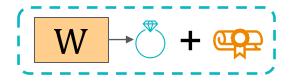
Range statement:



 $W \rightarrow V + \bigoplus W$ where each entry of W is in [0, b)

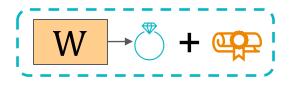
Range statement:

Generalize to (-b, b)



 $W \rightarrow V + \bigoplus W$ where each entry of W is in [0, b)

Range statement:



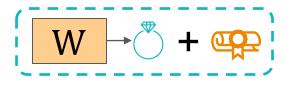
 $W \rightarrow U + W$ where each entry of W is in [0, b)

Observation:

$$W_{i,j} \in [0,b) \cap \mathbb{Z}$$

$$F(i,j) := \prod_{t=[0,b)} (W_{i,j} - t) = 0 \mod q$$

Range statement:



 $W \rightarrow C + C$ where each entry of W is in [0, b)

Observation:

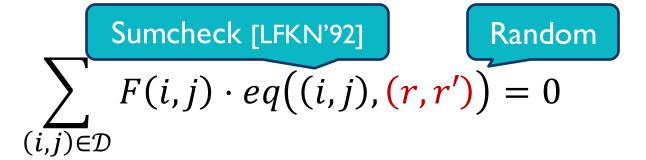
$$W_{i,j} \in [0,b) \cap \mathbb{Z} \qquad \qquad F(i,j) \coloneqq \prod_{j \in I} (W_{i,j} - t) = 0 \bmod q$$

$$\prod_{t=[0,h)} (W_{i,j} - t) = 0 \mod q$$

Observation:

$$\forall (i,j) \in \mathcal{D}$$
:

$$F(i,j)=0$$



Observation:

$$\forall (i,j) \in \mathcal{D}$$
:
 $F(i,j) = 0$

$$\sum_{(i,j)\in\mathcal{D}} F(i,j) \cdot eq((i,j),(r,r')) = 0$$

Sumcheck redcution:

$$\sum_{(i,j)\in\mathcal{D}} F(i,j) \cdot eq((i,j), (r,r')) = 0$$

Observation:

$$\forall (i,j) \in \mathcal{D}$$
:
 $F(i,j) = 0$

$$\sum_{(i,j)\in\mathcal{D}} F(i,j) \cdot eq((i,j),(r,r')) = 0$$

Sumcheck redcution:

$$\sum_{(i,j)\in\mathcal{D}} F(i,j) \cdot eq((i,j), (r,r')) = 0$$
Linear 6
$$\widetilde{W}(\vec{\gamma}) = v$$

Linear evaluation

$$\widetilde{W}(\vec{\gamma}) = v$$

Observation:

$$\forall (i,j) \in \mathcal{D}$$
:
 $F(i,j) = 0$

$$\sum_{(i,j)\in\mathcal{D}} F(i,j) \cdot eq((i,j), (r,r')) = 0$$

Sumcheck redcution:

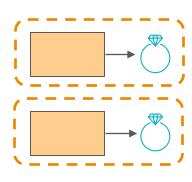
$$\sum_{(i,j)\in\mathcal{D}} F(i,j) \cdot eq((i,j), (r,r')) = 0$$

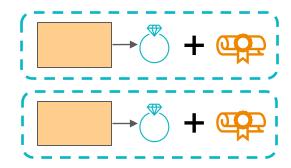
$$\widetilde{W}(\vec{\gamma}) = v$$
Folding-friendly

Linear evaluation

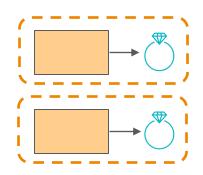
$$\widetilde{W}(\vec{\gamma}) = v < Folding-friendly$$

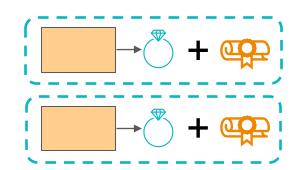
Step 1: Commit Step 2: Linearize



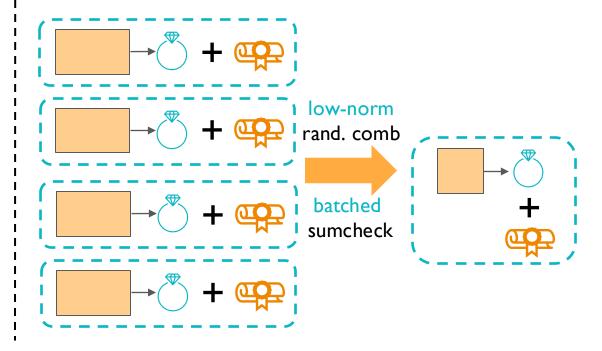


Step I: Commit Step 2: Linearize (Combined) Step 3:

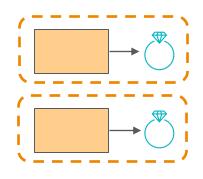


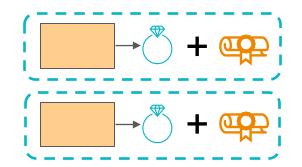


Decomp + Range-chk + Fold



Step I: Commit Step 2: Linearize (Combined) Step 3:

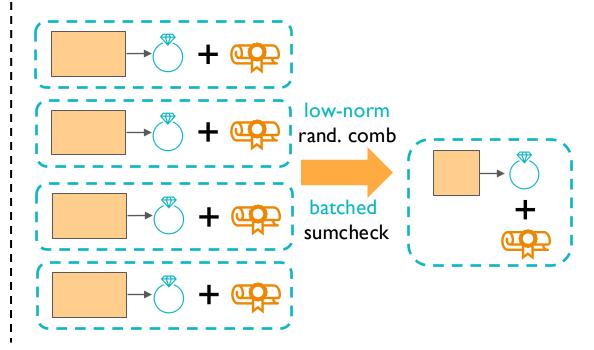




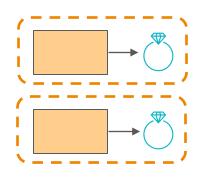
Folding Verifier:

- Batched Sumcheck: $O(\log n)$ Rq ops
- Rand. comb: $O(\lambda)$ field ops

(<u>Combined) Step 3:</u> <u>Decomp + Range-chk + Fold</u>



Step I: Commit Step 2: Linearize (Combined) Step 3:

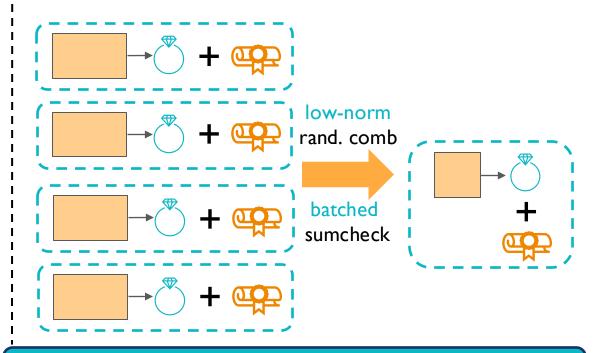




Folding Verifier:

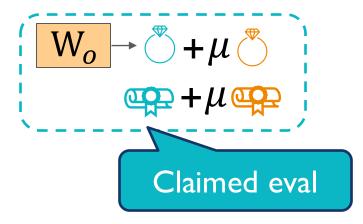
- Batched Sumcheck: $O(\log n)$ Rq ops
- Rand. comb: $O(\lambda)$ field ops

(<u>Combined) Step 3:</u> <u>Decomp + Range-chk + Fold</u>

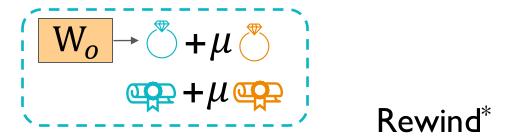


[BC'25, NS'25]: Replace ring w/ field ops

Ist folded instance-witness pair:

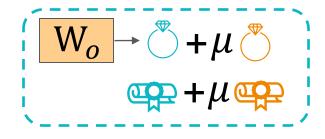


Ist folded instance-witness pair:



2nd folded instance-witness pair:

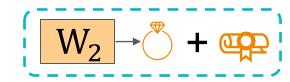
Ist folded instance-witness pair:



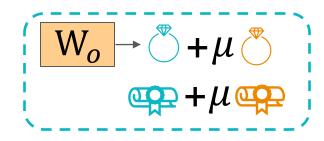
2nd folded instance-witness pair:

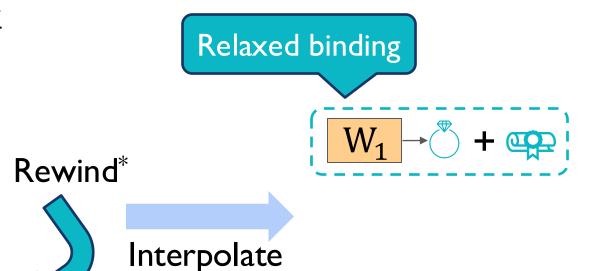
$$(W'_o \rightarrow V + \mu' V)$$

$$+ \mu' V$$



Ist folded instance-witness pair:

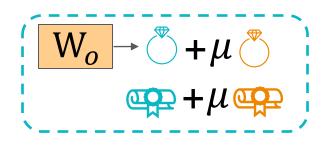


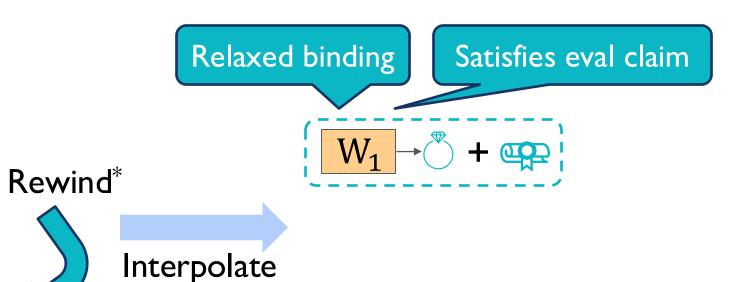


2nd folded instance-witness pair:

$$W'_o \rightarrow V + \mu' V + \mu'$$

Ist folded instance-witness pair:

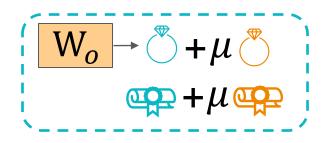


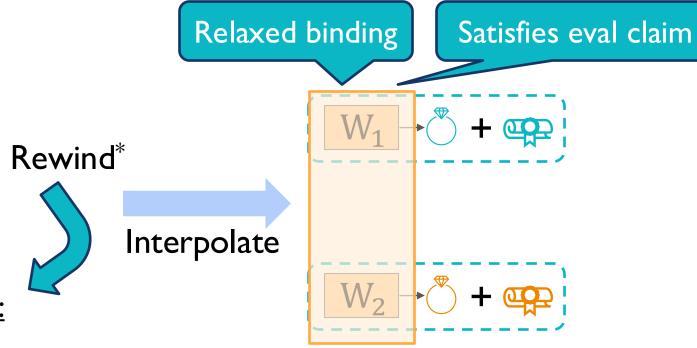


2nd folded instance-witness pair:

15

Ist folded instance-witness pair:

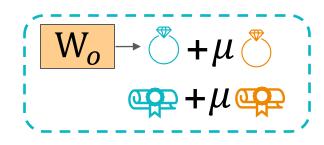




2nd folded instance-witness pair:

Low-norm by Sumcheck soundness

Ist folded instance-witness pair:



Relaxed binding Satisfies eval claim Rewind* Interpolate Low-norm by Sumcheck soundness

2nd folded instance-witness pair:

$$(W'_o \rightarrow V + \mu' V)$$

$$+ \mu' V$$

More subtleties on supporting witness vectors over R_q

Summary & Future Work

Summary & Extensions

- First plausibly <u>PQ-secure</u> folding scheme from <u>Module-SIS</u>
- Extensions: Small modulus & high-degree constraint system

Summary & Future Work

Summary & Extensions

- First plausibly <u>PQ-secure</u> folding scheme from <u>Module-SIS</u>
- Extensions: Small modulus & high-degree constraint system

Follow-up

- [BC'25, C'25]: Efficient range-proofs w/o decomposition
- [NS'25]: Pay-per-bit commitment + better support to small fields
- [FKNP'24]: Security from SIS

Summary & Future Work

Summary & Extensions

- First plausibly <u>PQ-secure</u> folding scheme from <u>Module-SIS</u>
- Extensions: Small modulus & high-degree constraint system

Follow-up

- [BC'25, C'25]: Efficient range-proofs w/o decomposition
- [NS'25]: Pay-per-bit commitment + better support to small fields
- [FKNP'24]: Security from SIS

Future work

QROM Security Analysis

THANK YOU

Eprint 2024/257

