LatticeFold & its Applications to
Succinct Proof Systems

Dan Boneh Binyi Chen

,"‘,’\; ZeR Ry *Q“-_
A RO\
YA 2 AWVARN
HEI/ R ' BN - e
e Eothe, =\ 2\
= L “NE5h
NS S/
\ S /1
\ A b/

'-‘* =7 44»*,."

1891

(Zk)SNARKS Eg SHA3(.....)

(zk)SNARK = A succinct ZK proof showing that 3w st. C(x,w) = 0
S(¢)~ (pc.vpo)

Pwpec, x,w) V o, x,m) - 0/1

Properties:
« Completeness: honest P can compute valid
 Knowledge soundness: malicious P* knows valid w if it can generate valid

 Zero knowledge: 7 hide the withess w
Key requirements for : Short (i.e. || < |w|) + Fast to verify (e.g. O(log|F|) time)

Applications: Blockchain, Verifiable zkML/FHE, Fighting disinformation & more
[Xie+22, NT16, DB22, KHSS22, BBBF18, XCBFCK22.......]

Challenges: Proving expensive statements (e.g., ML tasks) efficiently

M ono l.lth iC S NAR KS [Bitansky-Canetti-Chiesa-Tromer12...]

E.g., a block of 10K txs is valid w.r.t. ledger state update

NP statement (x, w) for a relation R Pre-quantum Schemes:

: * Groth16, Plonk [GWC19], MarlinfCHMMVW201, Bulletproof[BBBPWM18]
Full computation trace « HyperPlonk[CBBZ22], Spartan[Setty19], etc...

Algebraic transform l

. — Post-quantum Schemes:
Extended witness W' € F" . STAR|-<[BBHR18],BrakedOWH[GLSTW21],Ligel‘O[AHIV17], Basefold[zcF23] ...
l * Lattice Bulletproofs[BLNs20,Ack21], LaBRADOR[BS22] ...
Global computati_c)m Challenges for proving expensive computation:
over the entire W « Expensive global computation
* Large prover memory
FFTs, MSMs, etc... l * Harder parallelization + less streaming-friendly

Proof i

Piecemeal SNARKSs [Valiant08, BCTV14, BCCT12]

NP statement (x, w) for a relation R Ideas: e.g. Mangrove[NDCTB24], [Sou23]
e.g., a block of 10K txs is valid w.r.t. the ledger state o Split the statement into multiple small chunks
l split * Prove chunk statements using SNARK Recursion

[Bitansky-Canetti-Chiesa-Tromer12]

chunk
stmt 2

;ﬁ} chunk
stmt 1
Z o SNARK Circuit:
/ Ty /Tz (1) chunk stmt 3B is correct
)+

chunk | P (2) mq,m, verify correctly
/ sthmtg é tv

‘\\\T:\‘\\\\\\‘"’/’,,//E’/’//’ Pros:
T[l 7-[2

* Minimal memory overhead

NN

Py

Z TV * Streaming/parallelization friendly
1 Problem: noticeable recursion overhead
SNARK Proof 7y * SNARK generation at each recursion step

* Concretely expensive SNARK verifier circuit

Folding Schemes [KST21,BCLMS20,KS23,BC23]

Committed NP Relation:

com: A commitment scheme

(x" = (c,x),w) €ER’

(x,w) ER ‘ if and only if

(x,w) €ER A (c = com(w))

Next: We omit public input x for notational convenience

Folding Schemes [KST21,BCLMS20,KS23,BC23]
E.g.,ci =com(wy) Ap(wy) =1

FOlding: C1,C2 Stmt (Cl) Wl)X(CZI WZ)
l l Goal: prove (cq,wq)X(cy,Ww,) € RXR

Foldingveq | T | Folding Peq

l l

Cfd Wfd

Reduced goal: prove (c¢q, weg) € R
P¢q and v¢q can be made non-interactive

A

Completeness: If (c;, w;)X(cy, Ww,) € RXR, then (cgq, Wgq) € R for honest execution
Knowledge soundness: If (c;q wgq) € R for P*’s output wgq, then P* also knows wy, w,

Generalization: Reduction of knowledge [Kothapalli and Parno23]

Input relation: R{:= RXR Output relation: R, :=R

(Cin, Win) = (c1, w1)X(cz,W3) (Cout» Wout) = (Cta, Wrq)

SNARKSs from Folding [KST21,BCLMS20,KS23,BC23]

Similar strategies used in SNARGs for P and BARGs[Choudhuru-Jain-Jin21, Waters-Wu22]
Piecemeal SNARK: Prove a chain of computations (can extend to a tree of computations)

SNARK P computes: SNARK V checks
(cf(g),wf((;)))—> Pgg —»(Cgé),wf(;))—» Peg b e —»| Pty +— (Cf(é),wf(é)) —> | Pyg — —> | Ptq —> m= (cf(g),wf?))e Rk

7 | Ar Y é A I\

7 , 7 Is c{™ correct?
7 7 7 7 i
(Clrwl) € Rchk (CZJWZ) € Rchk ------------ (Cn,Wn) € Rchk
T split

Fix: NP statement (x, w) for a relation R
 Setx = H(c,, H(¢;;—1, .--, H(cy)) as public input
* SNARKP also sends (¢y, ..., Cp) Caveat: proof/verifier complexity linear ton

 Vchecksx = H(c,, H(c,—1, ..., H(cy)) and computes cf(g) by iteratively calling folding v¢4 given ¢4, ..., ¢,

Idea: Delegate the verifier work into the folded relation

SNARKSs from Folding [KST21,BCLMS20,KS23,BC23]

Piecemeal SNARK: Prove a chain of computations (can extend to a tree of computations)

R: an expanded relation to R i
Omit public input hash checks for simplicity

Previ — 1 steps are correct (1) + witness W(i+1)
(Ca) W(i)) cp | M “fd |, , (i+1) fd " "Relation R :)
fd fd m - fd Cfd (1) Ci+1 = Com(Wi+1)
/ ﬂ?d (2) local computation is correct
The i-th step is correct i c . R RCRa et B L e
. Vtd 7 ompute :(3) Folding verifier vy (c-, Cei,C g) = 1
(¢, w) ER M (Cis1,Wit1) ER Kd bofdf dd)/
Why faster than SNARK recursion? A folding scheme could be more efficient than a SNARK
Folding verifigr \"4ZE _ Folding prover P¢;:
* = check cf(:lﬂ) =c+r- cf(é) forsome scalarr e Wf((;-l-l) =w;+r1- Wf((;) : linear combination of field elems
* much simpler than a SNARK verifier! much faster than a SNARK prover!
\ J)
I T

Simpler relation R Faster folding for relation R than SNARK proving

Folding Schemes: State-of-the-Art

Committed NP statement (¢c,w) € R
* Instance c: a short com(w) to withess w

* comis linearly-homomorphic for easy folding
e.g., com(a) + com(b) = com(a + b)

State-of-the-art: Security:
 Pedersen commitments « Based on DLOG assumptions & not post-quantum secure

* Linearly-homomorphic
* Pairing-free
* No trusted setup

Efficiency:
* Require cycle curves

* Prover: many group-exponentiations over a large field
* Wasteful as real data units usually small (e.g. 32-bit)
Alternative Option: The folding verifier circuit v¢y:
Recursive SNARKs from hash-based STARKs * Elliptic curve scalar multiplications : (
Less efficient: need full SNARK recursion * Non-native field-op simulations : (
implement arithmetic in [F;, as a circuit over I,

Can we construct a folding scheme with

* Post-quantum security
* Ultra-fast prover
* Efficient verifier circuit (e.g., no need for non-native field emulation)

Contributions

LatticeFold: The first lattice-based folding scheme
* Based onthe Module Short-Integer-Solution (MSIS) assumption
* Competitive efficiency vs existing folding schemes

* Linear-time prover + succinct verifier circuit
* Relatively small fields (e.g., 32-bit or 64-bit)

* Native simulation of ring operations in circuits
* More friendly for applications like verifiable FHEs/MLs

Technical contribution:
New folding techniques for lattice-based commitments

Relation R :

Warmup: g =comuy))
Folding for

(2) local computation IS correct
(3) Folding verifier vig(cq, €y, Csq; Teq) = 1

/
Commitments Opening Relation

Folding for Ajtai Commitment Openings

Committed NP statement (c, w) € R
(’) speed = Poseidon hash over fast fields [GKRRS19]

* |nst : hort t it el e ke ge .
nStance c: a snor com(w) O Winessw - How about Ajtai binding commitments?[Ajt96,99]
* comis linearly-homomorphic for easy folding

) N Generalization
A A g TP = |c |€Z; Compact Z = R:=1Z[X]/(X*+1)
- w| ez LZqg = Ry =R/qR
w; € (— ' LM’07,PR’
w; € (—p,p) fori € [n] Module-SIS [LM’07,PR’07]
J Binding for “small-norm” w (under-StSassumption)

Homomorphic property: (over small-norm messages)

4)

1
N

C1 _I_ Co — A X

How to commit to w w/ large norms?

Dealing with Arbitrary Witness

How to commit to an arbitrary witness w w/ large norms?
Comm open relation: Our full-fledged protocol fold a similar relation

RE i = {(c; @,9)): (c = AD) A (Ilvll < B) A (W = 7))
Gadget matrix
E.g.wy =[1,2,2% ...,2F 1] x

Next, assume that w is always low-norm in the first place!
Comm open relation:

The infinite norm of w € Z"
lwll :== max(|w;|)i-,

RE. ={(c,W):c=AWA|wl < B}

ajtai

Folding for Ajtai Commitment Openings

The infinite norm of w € Z"

Comm open relation: Rfjtai = {(c,w) : c = AW A |w]| < B} Iwll = max(jw;)i,

Naive approach:

(ci,Wwq) € RB- L — r € Zq is arandom scalar
ajtal _,(Cfd:=C1+T"C2) &Rﬁ |

Folding Pra [— (1 Z " 7" fitai.
(cy,wy) € Rfjtai 7
Problems:
* ||wgql| can be larger than 8 (evenif ||| is small) Thoughts:
* c¢q NO longer binding after ||wgq|| exceeds threshold Make ||lwq||, [[w; || smaller
Can’t support many folding steps before random LinComb?

Our Strategy

Relation: RY. == {(c,W) : c = AW A ||w]|| < B

ajtai
Recall our goal: reduction of knowledge Il Nice property of RoK! [Kothapalli and Parno23]
B Sequential composition:
Rajtai B))
X — I1 _yRajtai R4 —>Ha R, —>Hb R; » R4 m’ R;
RB
ajtai
Attempt: b I
ajtai
X
Rf . R3itai :
s Decompose W X Fold p
X _-’ 7 b 7 _—> Rajtai
Rfjtai Rajtai . .
X How to instantiate
RZ.

0
.
‘e K
""""

Decompose and Fold?

Roadmap 9

* Decomposition Protocol

b
Rajtai
X
B b
Rajtai > Ra]tal
x ——| Decomposew |— X
B b
Rajtai Ra]tal
X
Rb

Norm Control with Decomposition

2 _
b =p c=Aw w

Goal: RJ.., Decompose: | | , _,
_ B D c1 = Awy,c; = Aw;
(c,W) € RajtzT’ ecompose | X >

Ra]tal P V check:

;)) c=c¢+b-c
RoK from Ra]ta1XRa]tal to (Ra]tal) V_V)ll; V_V)Z Extract:

is a parallel composition of the above protocol W= W, +b-w,

“Write” the big vector w using “base” b (c,W") € Ry

“remainder” + “quotient”

: ~
| A 4
. . : w — VT}1 + b
w = |(wi |+ b * W2 :
| N\
Z-coeffs Z-coeffs 7Z-coeffs : C — Cl + b CZ

in(—B,8) in (—=b,b) in (—=b, b)

Roadmap 9

 Fold Protocol

b
Rajtai
X
B Rb. .
Rajtai » ajtai
wx — Decomposew |[— X
B RY.. .
Rajtai ajtai
X
Rb

Fold

ajtai

olding: Naive Approach

Goal: Naive idea: ,
Y, b« ,3 r€lgisa
Rajtai (ci, wy) E Ra]tal ., small random scalar

X (Cfd3=C1+T'C2)

— Fold . ph Wfq = Wq + T - Wy

: Folding P¢q

ajtai Cy,W5) E RD >
Ny (2 2) ajtai c Rﬁ |
ajtai”
Ra]tal Completeness VvV

Knowledge extraction: Rewind P to obtain wij, wg; for cfj = ¢y + 1y - ¢; and ¢y = cl +1 0

--

by
Wiq = W1 + 1y - Wy _ X -1
y wy = (wig — wig) - (ry)
Wey =W+ 17, W .

fd 1 77y "2/ Solve linear egs ' ' o ' '
for wy, wy The norm can be much larger than b!

Same for wy

Roadmap 9

 Fold Protocol

* Naive extraction + argue smallness of the extracted witness

\)
Y

Using Range proof: witnessw € [—b, b|"

(Batched) Range proof via Sumcheck

¢’ = ¢y &c, infolding w’ = w; &w, in folding
Goal: Given input commitment ¢’, prove knowledge of w' = (f, f5, ..., f;,) € Z"
o ' =AW’
« W =(fy, f3 ., fn) has norm smaller than b
* Efficient (folding) verifier circuit

Our strategy: Combine naive folding & extraction + Range proof protocol
¢’ = Aw' (achieved by naive folding + extraction)

v

Our solution: A range-proof protocol from Sumcheck

Review of the Sumcheck Protocol [LFKNS2]

Goal: Given a “committed” m-variate poly g(Xy, ..., Xm), convince Vthat Y, cco 1ym g(X) = s

Naive verifier: query g at every x € {0,1}™ and check the sum QO(2™) complexity : (

Sumcheck protocol [LFKN92]
* m-round interactive protocol between P and V
* Vsends arandom challenger; € F in each round
* Atthe end of the protocol, V queries g at a single random point

Sumcheck: Zzcro ymg(X) =s

‘ Sumcheck protocol [LFKN92] O(m)-time verifier | A reduction from
Sumcheck to Eval stmt

EvalCheck: g(7}, ..., %) = t'atarandom 7 € Zg"

History: Key ingredient for proving PH € IP and inspires the proof of IP = PSPACE

Goal: Given input commitment c¢’, prove knowledge of w' = (fy, f5, ..., f;,) € Z"

--

--

Our solution: A range-proof protocol from Sumcheck

Step 1: Rephrase the range-proof statement as a Sumcheck statement
Step 2: Construct a folding protocol for the Sumcheck statement

Step 1: Reducing Range proof to Sumcheck

Can extend to elements in ring

Range proof: Prove knowledge of a witness W' = (fi, f2, .., fu) € Z" st. g = 7[x]/(x? + 1)

f1 €L fz fn-1 In
€(—b,b)CZ € (—b, b) € (—b,b) € (—b,b)
h(x) =0 < x € (—b,b) ‘
h(x) =x(x+ 1) (x=1)- (x + (b — 1))(x — (b — 1)) over Zg = [—%,%] and g > 2bis a prime
h(f1) =0 h(f2) =0 h(fn-1) =0 h(fn) =0
‘ Embed w' to the Boolean hypercube of
a multilinear polynomialf(xl,) xlogn)
X 00...00 00..01 11...10 11...11
RERE)) | R(fh=0 | h(ffh=0 v | Ak =0 | A(ffh=0

‘ Zero-check to sum-check [CBBZ23, Setty20]

Sumcheck: prove that 2. 1310gn g (X) = 0 where g(X) = h(f (X)) - eqq(X) forarand a € Z

logn
q

Step 2: Sumcheck Folding

Range proof: witness w' = (f1, f, ..., f») € [—b, b]"
' g@) = h(f@)) - equ(¥) -~ Step1 vV

Sumcheck: 23 1y10gng (¥) =0

Prover time: = 0(bn)
Sumcheck protocol [LFKN92] {
‘ Verifier time: O(blogn)

logn
q

EvalCheck: /() = t (and verifier can check g(#) = h(t) - eq, () = t' itself)

EvalCheck: g(¥) = t'atarandomt € Z

Problem: How to check f () = t given the comm of f?
« Send (fy, fo, ..., [) to the folding verifier to check it? O(n) folding verifier : (

Observation: EvalStmt f(¥) = tis easy to fold!

Folding Evaluation Statements

Observation: f(7) = t is easy to fold!

il e (R — fficientl
Multilinear extension: f(r) = e{o 1}lognf(X) eqr(x) cirr:?jtr;b{e
Tanslate g | 10D =7t - fiG) =y tor | Lfi=fitp:f forrandp |
SumChk Stmt SumCheck - fra(7h) =2 Lo
L () =ty — f2(75) =282 _

How does it help to check f () = t given the comm of f?
* Fold the evaluation statement without checking!

Folding for Ajtai Commitment Openings

Solution: Expand relation Ry, to include the evaluation statement
(¢ = com(f) A (f(7) = 1)

Online statement

jotai ¢, =, comy(f7) Nai
MatMul + alvi Fold Cra =2 comg(fiq) 5
¢, =7 comy(f2) RangePr +—— SumCheck for _> 2 A_ feval
R, e)/_ t EvalStmt RangeProof & EvalStmt NevffngL;n?ui;te d
2\I2) =72 L2
Accumulated statement
statement Verifier: O (blogn)

The knowledge soundness proof is more subtle than intuition
* A malicious prover can adaptively choose the output witness after seeing the challenges
* = The extracted input withesses could depend on the sumcheck challenges

Subtleties & Optimizations

Sumcheck over Rings: [CCKP19, BCS21]

* Ajtai commitments over ring R, = Z, [X]/(X? + 1) for concrete efficiency

* Small-norm random folding scalar chosen from S € R, for negligible soundness error
* |mplication: Run Sumcheck over rings

Supporting Small Modulus:

* We want a small modulus q for better efficiency
* Efficient CPU/GPU ops; no big-number arithmetics
* More efficient packing of real-world data

Relation R :
(1), Ciy1. = com(w;,q)

--

Folding for NP-complete relation

Arithmetic over a ring — Great fit for Verifiable ML/FHE | ez H'é:'éa"s"i"d'éiiib'}é'é'é'Eb"ﬁ%'ﬁl}'ié't'iaﬁ"‘

Ry = Zq[X]/(X* + 1) = F(§; q: a64-bit prime

Effi C i e n Cy ESti m ates Cehi: chunk circuit size (e.g. 220 gates over F4)

Norm bound: ~ 21°; Base: b = 2

LatticeFold

speed = fast hash

! Existing schemes
Folding prover: Compute Ajtai commitments ! Pedersen commimtents

O (|Ccnkl) multiplications over R, O (|Cchkl)-sized Multi-Scalar-Muls
Canreuse fast FHE impl!

Folding verifier: Sumcheck verifier

ECC scalar-mul + (Sumcheck V)

r
I
|
|
|
O(b - log|Cenk|) hashes and R -ops | non-native field ops in the circuit
native-ops in the circuit over R, , l.e., arithmetic in [F, as a circuit over IF,,

I

|

L

Competitive circuit sizes

Piecemeal SNARK proof: =2 folding instance-witness pairs What if it’s still large?

E.g., splitting a stmt of size 249 to 22° chunks —» 22%-sized chunk stmts

Solution: Use a PQ-secure STARK to prove the correctness of the folding statement
< 100KB and 2ms verifier (STIR[ACFY24]) < 5KB w/ Hyperplonk+KZG[CBBZ23]

Summary & Open Problems

Takeaway:
* Thefirst lattice-based folding scheme based on Ajtai commitments

* Gives memory-efficient, plausibly PQ-secure SNARKSs, with fast provers
 Generic techniques for folding lattice-based commitments w/ norm constraints

Open problems:

* Compact+ homomorphic lattice commitments with no norm constraints
* Folding table lookup relations (e.g., from Lasso [setty-Thaler-Wahby23])
* Efficientimplementation

Concurrent work:[Biinz-Mishra-Nguyen-Wang24]

* Purely from hashing; no lattice crypto

* General optimization techniques for piecemeal SNARKs (apply to LatticeFold)
* Larger verifier circuit; only supports bounded-depth folding (attack exists)

Thank you!

https://eprint.iacr.org/2024/257.pdf

Expecting updates soon!

https://eprint.iacr.org/2024/257.pdf

