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(zk)SNARKs
(zk)SNARK = A succinct ZK proof showing that ∃𝒘  s.t.  𝐶(𝒙,𝒘) 	= 0

𝜋

S(𝐶)→ (𝑝𝑝! , 𝑣𝑝")

P(𝑝𝑝! , 𝒙,𝒘)

Properties:
• Completeness: honest P can compute valid 𝜋
• Knowledge soundness: malicious P* knows valid 𝒘 if it can generate valid 𝜋  
• Zero knowledge: 𝜋	hide the witness 𝒘 

V (𝑣𝑝! , 𝒙, 𝜋)→ 0/1

E.g., SHA-3(𝒘) = 𝒙

Key requirements for 𝝅: Short (i.e. 𝜋 ≪ |𝒘|) + Fast to verify (e.g. O(log 𝐹 ) time) 
Applications: Blockchain, Verifiable zkML/FHE, Fighting disinformation & more
[Xie+22, NT16, DB22, KHSS22, BBBF18, XCBFCK22……]

Challenges: Proving expensive statements (e.g., ML tasks) efficiently



Monolithic SNARKs [Bitansky-Canetti-Chiesa-Tromer12…]

Global computation 
over the entire 𝑊

Proof 𝜋

Challenges for proving expensive computation: 
• Expensive global computation
• Large prover memory
• Harder parallelization + less streaming-friendly

NP statement 𝑥, 𝑤  for a relation 𝑅!

Extended witness 𝑊 ∈ 𝔽"
Algebraic transform

Full computation trace

Pre-quantum Schemes:
• Groth16, Plonk [GWC19], Marlin[CHMMVW20], Bulletproof[BBBPWM18]
• HyperPlonk[CBBZ22], Spartan[Setty19], etc…

Post-quantum Schemes:
• STARK[BBHR18],Brakedown[GLSTW21],Ligero[AHIV17], Basefold[ZCF23] …
• Lattice Bulletproofs[BLNS20,ACK21], LaBRADOR[BS22] …

E.g., a block of 10K txs is valid w.r.t. ledger state update

FFTs, MSMs, etc… 



Piecemeal SNARKs [Valiant08, BCTV14, BCCT12]

NP statement 𝑥, 𝑤  for a relation 𝑅!

split

SNARK Proof 𝜋#$

Ideas:
• Split the statement into multiple small chunks
• Prove chunk statements using SNARK Recursion

Problem: noticeable recursion overhead
• SNARK generation at each recursion step
• Concretely expensive SNARK verifier circuit

Pros:
• Minimal memory overhead
• Streaming/parallelization friendly+ v

+ v+ v

𝜋! 𝜋"
SNARK Circuit:
(1)  chunk stmt 3     is correct
(2)  𝜋%, 𝜋& verify correctly

e.g., a block of 10K txs is valid w.r.t. the ledger state

𝜋!∗ 𝜋"∗

[Bitansky-Canetti-Chiesa-Tromer12]

e.g. Mangrove[NDCTB24], [Sou23]

chunk
stmt 1

chunk
stmt 2

chunk
stmt 3



Folding Schemes [KST21,BCLMS20,KS23,BC23]

Committed NP Relation:

𝑥, 𝑤 ∈ 𝑅

com: A commitment scheme

𝑥′ = (𝑐, 𝑥), 𝑤 ∈ 𝑅!

𝑥, 𝑤 ∈ 𝑅 ∧ (𝑐 = com 𝑤 )
if and only if

Next: We omit public input 𝑥 for notational convenience



Folding Schemes [KST21,BCLMS20,KS23,BC23]

Folding:
E.g., 𝑐% = com 𝑤% ∧ 𝜙 𝑤% = 1

Folding 𝑃'(Folding v'( 𝚷

𝑤'(

Stmt 𝑐%, 𝑤%𝑐%, 𝑐&

𝑐'(

Completeness: If 𝑐%, 𝑤% × 𝑐&, 𝑤& ∈ 𝑅×𝑅, then 𝑐'(, 𝑤'( ∈ 𝑅	for honest execution
Knowledge soundness: If 𝑐'(	𝑤'( ∈ 𝑅 for 𝑃∗’s output 𝑤'(, then 𝑃∗ also knows 𝑤%, 𝑤& 

Reduced goal: prove 𝑐'(, 𝑤'( ∈ 𝑅

Generalization: Reduction of knowledge [Kothapalli and Parno23]

Input relation: 𝑅% Output relation: 𝑅&
𝑐*+, 𝑤*+

Goal: prove 𝑐%, 𝑤% × 𝑐&, 𝑤& ∈ 𝑅×𝑅

𝑐,-$, 𝑤,-$

𝑃$%	and v$% can be made non-interactive

× 𝑐&, 𝑤&

≔ 𝑅×𝑅 ≔ 𝑅

≔ 𝑐%, 𝑤% × 𝑐&, 𝑤& ≔ (𝑐'(, 𝑤'()



SNARKs from Folding [KST21,BCLMS20,KS23,BC23]

Piecemeal SNARK:

NP statement 𝑥, 𝑤  for a relation 𝑅!

(𝑐!, 𝑤!) ∈ 𝑅"#$ (𝑐%, 𝑤%) ∈ 𝑅"#$

split
…… …… (𝑐& , 𝑤&) ∈ 𝑅"#$

(𝑐'(
) , 𝑤'(

())) (𝑐'(
! , 𝑤'(

(!))𝑃!" 𝑃!" ……

SNARK V checks
∈ 𝑅&'(𝑃!" 𝑃!" 𝑃!" 𝜋 = (𝑐'(

& , 𝑤'(
(&))……(𝑐'(

, , 𝑤'(
(,))

Is 𝑐"#
$  correct?

Fix: 
• Set x = H(𝑐), H(𝑐)*!, … , H(𝑐!)) as public input
• SNARK P also sends (𝑐!, … , 𝑐))
• V checks x = H(𝑐), H(𝑐)*!, … , H(𝑐!)) and computes 𝑐$%

)  by iteratively calling folding v$% given 𝑐!, … , 𝑐) 
Caveat: proof/verifier complexity linear to 𝑛

Idea: Delegate the verifier work into the folded relation

Prove a chain of computations (can extend to a tree of computations)
Similar strategies used in SNARGs for P and BARGs[Choudhuru-Jain-Jin21, Waters-Wu22] 

SNARK P computes:



SNARKs from Folding [KST21,BCLMS20,KS23,BC23]

Relation 𝑅	:
(1)  𝑐+,! = com(𝑤+,!)
(2) local computation         is correct
(3) Folding verifier v$% 𝑐+ , 𝑐$%

(+), 𝑐$%
(+,!); 𝜋$% = 1

𝑐'(
(/0%)

+ witness 𝑤'(
(/0%)

Folding verifier 𝐯$%:
• ≈ check 𝑐$%

(+,!) = 𝑐+ + 𝑟 ⋅ 𝑐$%
(+) for some scalar 𝑟

• much simpler than a SNARK verifier!

v$%
𝑐$%
(+)

𝑐+ 𝜋"#
Compute
𝑐+,!, 𝑤+,! ∈ 𝑅

v$%

𝑐$%
(+), 𝑤$%

(+) ∈ 𝑅

𝑐+ , 𝑤+ ∈ 𝑅

v$%
Prev 𝑖 − 1 steps are correct

The 𝑖-th step is correct

Piecemeal SNARK: Prove a chain of computations (can extend to a tree of computations)

𝑅: an expanded relation to 𝑅&'( 
Omit public input hash checks for simplicity

Folding prover 𝐏$%:
• 𝑤$%

(+,!) = 𝑤+ + 𝑟 ⋅ 𝑤$%
(+) : linear combination of field elems

• much faster than a SNARK prover!

Why faster than SNARK recursion?

Simpler relation 𝑅 Faster folding for relation 𝑅	than SNARK proving

A folding scheme could be more eXicient than a SNARK



Folding Schemes: State-of-the-Art
Committed NP statement 𝑐, 𝑤 ∈ 𝑅
• Instance 𝑐: a short com(𝑤) to witness 𝑤
• com is linearly-homomorphic for easy folding

State-of-the-art:
• Pedersen commitments

• Linearly-homomorphic
• Pairing-free
• No trusted setup

Security:
• Based on DLOG assumptions & not post-quantum secure

E?iciency:
• Require cycle curves
• Prover: many group-exponentiations over a large field

• Wasteful as real data units usually small (e.g. 32-bit)
• The folding verifier circuit v'(:

• Elliptic curve scalar multiplications : (
• Non-native field-op simulations : (

Alternative Option:
Recursive SNARKs from hash-based STARKs
Less e5icient: need full SNARK recursion

implement arithmetic in 𝔽/  as a circuit over 𝔽0

e.g., com 𝑎 + com 𝑏 = com(𝑎 + 𝑏) 



Can we construct a folding scheme with
• Post-quantum security
• Ultra-fast prover
• Efficient verifier circuit (e.g., no need for non-native field emulation)



LatticeFold: The first lattice-based folding scheme
• Based on the Module Short-Integer-Solution (MSIS) assumption
• Competitive efficiency vs existing folding schemes
• Linear-time prover + succinct verifier circuit
• Relatively small fields (e.g., 32-bit or 64-bit)

• Native simulation of ring operations in circuits
• More friendly for applications like verifiable FHEs/MLs

Technical contribution:
New folding techniques for lattice-based commitments

Contributions



Folding for
Relation 𝑅	:
(1)  𝑐/0% = com(𝑤/0%)
(2) local computation         is correct
(3) Folding verifier v'( 𝑐%, 𝑐&, 𝑐'(; 𝜋'( = 1

Commitments Opening Relation

Warmup:



Folding for Ajtai Commitment Openings
Committed NP statement 𝑐, 𝑤 ∈ 𝑅
• Instance 𝑐: a short com(𝑤) to witness 𝑤
• com is linearly-homomorphic for easy folding

𝐴 ←$ ℤ/2×)𝜆

𝑛

How about Ajtai binding commitments?[Ajt96,99]

𝑤 ∈ ℤ2"
= 𝑐

Binding for “small-norm” 𝑤 (under SIS assumption)

𝑐! 𝑐"+ = 𝐴 ×
𝑤! 𝑤"+

= 𝐴
𝑤!
+
𝑤"

Homomorphic property: (over small-norm messages)

speed ≈ Poseidon hash over fast fields [GKRRS19]

𝑤+ ∈ (−𝛽, 𝛽) for 𝑖 ∈ [𝑛] 

∈ ℤ23 Compact

Module-SIS

Generalization
ℤ	 ⇒ 	 𝑅 ≔ ℤ[𝑋]/(𝑋4 + 1)

 ℤ2 ⇒	𝑅2 ≔ 𝑅/𝑞𝑅
[LM’07,PR’07]

How to commit to 𝑤 w/ large norms?



Dealing with Arbitrary Witness
How to commit to an arbitrary witness 𝑤 w/ large norms?
Comm open relation:

&𝑅IJKIL
M ≔ { 𝑐; (𝑤, �⃗� 	): (𝑐 = 𝐴�⃗�) ∧ ( 𝑣 < 𝛽) ∧ (𝑤 = 𝐺×�⃗�)}	

Gadget matrix

E.g. 𝑤% = 1, 2, 2&, … , 256% 	×

�⃗�%
�⃗�&
.
.
.
�⃗�5

Our full-fledged protocol fold a similar relation

The infinite norm of 𝑤 ∈ ℤ)
𝑤 ≔ max |𝑤+| +4!)

Comm open relation:

𝑅IJKIL
M ≔ { 𝑐,𝑤 ∶ 𝑐 = 𝐴𝑤 ∧ 𝑤 < 𝛽}	

Next, assume that 𝑤 is always low-norm in the first place! 



Folding for Ajtai Commitment Openings
Comm open relation:  𝑅IJKIL

M

Naïve approach:

𝑐%, 𝑤% ∈ 𝑅78$7*
9

𝑐&, 𝑤& ∈ 𝑅78$7*
9

𝑐'( ≔ 𝑐% + 𝑟 ⋅ 𝑐&	
𝑤'( ≔ 𝑤% + 𝑟 ⋅ 𝑤&

Folding 𝑃'(

𝑟 ∈ ℤ( is a random scalar

∉ 𝑅IJKIL
M !

Problems:
• ‖𝑤/0‖ can be larger than 𝛽 (even if 𝑟  is small)
• 𝑐/0 no longer binding after ‖𝑤/0‖ exceeds threshold

Thoughts:
Make 𝑤1 , 𝑤2  smaller 
before random LinComb?

The infinite norm of 𝑤 ∈ ℤ)
𝑤 ≔ max |𝑤+| +4!)

Can’t support many folding steps

≔ { 𝑐,𝑤 ∶ 𝑐 = 𝐴𝑤 ∧ 𝑤 < 𝛽}	



Our Strategy
Relation: 𝑅&'(&)

* ≔ { 𝑐,𝑤 ∶ 𝑐 = 𝐴𝑤 ∧ 𝑤 < 𝛽}	

𝑅78$7*
9

𝑅78$7*
9

Π

Recall our goal: reduction of knowledge Π

× 𝑅78$7*
9

Attempt:

𝑅78$7*
9

𝑅78$7*
9

Decompose 𝑤×

𝑅78$7*:

𝑅78$7*:

𝑅78$7*:

𝑅78$7*:

×

×

× Fold 𝑅78$7*
9

Π

(𝑏 < 𝛽)

How to instantiate 
Decompose and Fold?

Sequential composition:
𝑅% 𝑅& 𝑅;Π5 Π6

𝑅% 𝑅;Π6 ∘ Π5

Nice property of RoK! [Kothapalli and Parno23] 



Roadmap

• Decomposition Protocol

• Fold Protocol

𝑅78$7*
9

𝑅78$7*
9

Decompose 𝑤×

𝑅78$7*:

𝑅78$7*:

𝑅78$7*:

𝑅78$7*:

×

×

×



Norm Control with Decomposition

𝑐, 𝑤 ∈ 𝑅78$7*
9 Decompose

𝑅78$7*:

𝑅78$7*:
×

Goal: 
𝑏& = 𝛽

RoK from 𝑅)*+),
- ×𝑅)*+),

-  to 𝑅)*+),. /
 

is a parallel composition of the above protocol

“Write” the big vector 𝑤 using “base” 𝑏

𝑤

ℤ-coeffs
in (−𝛽, 𝛽)

𝑤!

ℤ-coeLs
in (−𝑏, 𝑏)

𝑤"

ℤ-coeLs
in (−𝑏, 𝑏)

= +𝑏 ⋅

𝑐0, 𝑐1

𝑐0 = 𝐴𝑤0	, 𝑐1 = 𝐴𝑤1

V check:
𝑐 = 𝑐! + 𝑏 ⋅ 𝑐"

𝑤0	, 𝑤1

Decompose: 

𝑃 𝑉

𝑐 = 𝐴𝑤𝑤𝑐 = 𝐴𝑤

𝑤 𝑤! 𝑤"= +𝑏 ⋅

𝐴 𝐴

𝑐 = 𝑐" + 𝑐#𝑏 ⋅

Extract:
𝑤∗ = 𝑤0 + 𝑏 ⋅ 𝑤1

“remainder” + “quotient”

𝑐, 𝑤∗ ∈ 𝑅78$7*
9



Roadmap

• Decomposition Protocol

• Fold Protocol

𝑅78$7*
9

𝑅78$7*
9

Decompose 𝑤×

𝑅78$7*:

𝑅78$7*:

𝑅78$7*:

𝑅78$7*:

×

×

× Fold 𝑅78$7*
9



Folding: Naïve Approach

Fold 𝑅78$7*
9

𝑅78$7*:

𝑅78$7*:

×

×

…
…

Goal: 

Folding 𝑃'(
𝑐'( ≔ 𝑐% + 𝑟 ⋅ 𝑐&	
𝑤'( ≔ 𝑤% + 𝑟 ⋅ 𝑤&

𝑟 ∈ ℤ( is a 
small random scalar

Knowledge extraction: 

Naïve idea: 

𝑐%, 𝑤% ∈ 𝑅78$7*:

𝑐&, 𝑤& ∈ 𝑅78$7*:

Solve linear eqs
for 𝑤%, 𝑤&

𝑤V = 𝑤WX
Y −𝑤WX

Z ⋅ 𝒓𝒚 − 𝒓𝒙
]𝟏

Extracted witness:

The norm can be much larger than 𝒃!

∈ 𝑅IJKIL
M !

Completeness ✔

𝑤WX
Z = 𝑤_ + 𝑟Z ⋅ 𝑤V

𝑤WX
Y = 𝑤_ + 𝑟Y ⋅ 𝑤V

Same for 𝑤_

Rewind 𝑃'(∗  to obtain 𝑤'(
< , 𝑤'(

=  for 𝑐'(
< = 𝑐% + 𝑟< ⋅ 𝑐&	and 𝑐'(

= = 𝑐% + 𝑟= ⋅ 𝑐&	

𝑏 ≪ 𝛽

𝑐V, 𝑤V ∉ 𝑅IJKIL` !



Roadmap

• Decomposition Protocol

• Fold Protocol
• Naïve extraction + argue smallness of the extracted witness

Using Range proof: witness 𝑤 ∈ −𝑏, 𝑏 "



• 𝑐′ = 𝐴𝑤a

• 𝑤a = 𝑓_, 𝑓V, … , 𝑓b  has small norms

(Batched) Range proof via Sumcheck 

Goal: Given input commitment 𝑐a, prove knowledge of 𝑤a = 𝑓_, 𝑓V, … , 𝑓b ∈ ℤb
• 𝑐′ = 𝐴𝑤a

• 𝑤a = 𝑓_, 𝑓V, … , 𝑓b  has norm smaller than 𝑏
• E\icient (folding) verifier circuit

𝑐3 = 𝑐0 & 𝑐1 in folding

Our strategy: Combine naïve folding & extraction +  Range proof protocol
(achieved by naïve folding + extraction)

𝑤3 = 𝑤0 & 𝑤1 in folding

Our solution: A range-proof protocol from Sumcheck



Review of the Sumcheck Protocol [LFKN92]
Goal:  Given a “committed” 𝑚-variate poly 𝑔(𝑥%, … , 𝑥>), convince V that ∑<∈ @,% 4 𝑔 �⃗� = 𝑠	

Naïve verifier: query 𝑔 at every 𝑥 ∈ 0,1 > and check the sum Ω 2>  complexity : (

Sumcheck protocol [LFKN92]
• 𝑚-round interactive protocol between P and V

• V sends a random challenge 𝑟/ ∈ 𝔽 in each round
• At the end of the protocol, V queries 𝑔 at a single random point 

Sumcheck: Σ<⃗∈ @,% 4𝑔(�⃗�) 	= 𝑠

Sumcheck protocol [LFKN92]

EvalCheck: 𝑔 𝑟%, … , 𝑟> = 𝑡′ at a random 𝑟 ∈ ℤ2>

History: Key ingredient for proving 𝑃𝐻 ⊆ 	𝐼𝑃 and inspires the proof of 𝐼𝑃 = 𝑃𝑆𝑃𝐴𝐶𝐸

𝑂 𝑚 -time verifier A reduction from 
Sumcheck to Eval stmt



Step 1: Rephrase the range-proof statement as a Sumcheck statement
Step 2: Construct a folding protocol for the Sumcheck statement

Goal: Given input commitment 𝑐a, prove knowledge of 𝑤a = 𝑓_, 𝑓V, … , 𝑓b ∈ ℤb
• 𝑤a = 𝑓_, 𝑓V, … , 𝑓b  has norm smaller than 𝑏
Our solution: A range-proof protocol from Sumcheck



Step 1: Reducing Range proof to Sumcheck 
Range proof: Prove knowledge of a witness 𝑤C = 𝑓%, 𝑓&, … , 𝑓" ∈ ℤ" s.t.

Can extend to elements in ring 
𝑅 = ℤ 𝑋 /(𝑋7 + 1)

ℎ 𝑥 ≔ 𝑥 𝑥 + 1 ⋅ 𝑥 − 1 ⋯ 𝑥 + 𝑏 − 1 𝑥 − 𝑏 − 1 over ℤ/ ≔ − /
"
, /
"

 and 𝑞 > 2𝑏 is a prime

Embed 𝑤′	to the Boolean hypercube of 
a multilinear polynomial 𝑓 𝑥!, … , 𝑥89:)

Zero-check to sum-check [CBBZ23, Setty20]

Sumcheck: prove that Σ<⃗∈ @,% 5678𝑔(�⃗�) 	= 0 where 𝑔 �⃗� ≔ ℎ 𝑓 �⃗� ⋅ 𝑒𝑞D(�⃗�) for a rand 𝛼 ∈ ℤ2
E,F" 

𝑓! ∈ ℤ 𝑓" … … … 𝑓)*! 𝑓)
∈ −𝑏, 𝑏 ⊆ ℤ ∈ −𝑏, 𝑏 ∈ −𝑏, 𝑏 ∈ −𝑏, 𝑏

ℎ 𝑓! = 0 ℎ(𝑓") = 0 … … … ℎ 𝑓)*! = 0 ℎ 𝑓) = 0

�⃗� 00…00 00…01 … … … 11…10 11…11

ℎ 𝑥 = 0 ⟺ 𝑥 ∈ −𝑏, 𝑏

𝑓 �⃗� 𝑓! 𝑓" … … … 𝑓)*! 𝑓)ℎ(𝑓 �⃗� ) ℎ 𝑓! = 0 ℎ(𝑓") = 0 … … … ℎ 𝑓)*! = 0 ℎ 𝑓) = 0



Step 2: Sumcheck Folding

Sumcheck: Σ<⃗∈ @,% 5678𝑔(�⃗�) 	= 0

Range proof: witness 𝑤′ = 𝑓%, 𝑓&, … , 𝑓" ∈ −𝑏, 𝑏 "

Sumcheck protocol [LFKN92]

EvalCheck: 𝑔 𝑟 = 𝑡′ at a random 𝑟 ∈ ℤ2
E,F"

Prover time: ≈ 𝑂(𝑏𝑛)
Verifier time: 𝑂(𝑏log𝑛)

Problem: How to check 𝑓 𝑟 = 𝑡 given the comm of 𝑓? 
• Send 𝑓_, 𝑓V, … , 𝑓b  to the folding verifier to check it? 

Observation: EvalStmt 𝑓 𝑟 = 𝑡 is easy to fold!

EvalCheck: 𝑓 𝑟 = 𝑡

𝑔 �⃗� ≔ ℎ 𝑓 �⃗� ⋅ 𝑒𝑞;(�⃗�) Step 1 ✔

(and verifier can check 𝑔 𝑟 = 	ℎ 𝑡 ⋅ 𝑒𝑞; 𝑟 = 𝑡′ itself)

𝑂(𝑛) folding verifier : (



Folding Evaluation Statements
Observation: 𝑓 𝑟 = 𝑡 is easy to fold!

𝑓% 𝑟% =? 𝑡%

𝑓& 𝑟& =? 𝑡&

Translate to 
SumChk Stmt

Multilinear extension: 𝑓 𝑟 = Σ<⃗∈ @,% 5678𝑓 �⃗� ⋅ 𝑒𝑞H⃗(�⃗�)

SumCheck

𝑓'( ≔ 𝑓% + 𝜌 ⋅ 𝑓&	 for rand 𝜌
𝑓'( 𝑟I =? 𝑡I

efficiently
computable

𝑓% 𝑟I =? 𝑡I,%

𝑓& 𝑟I =? 𝑡I,&
𝑟I: sumcheck challenge

How does it help to check 𝑓 𝑟 = 𝑡 given the comm of 𝑓? 
• Fold the evaluation statement without checking!



Folding for Ajtai Commitment Openings
Solution: Expand relation 𝑅IJKIL to include the evaluation statement 

(𝑐 = com 𝑓 ) ∧ (𝑓 𝑟 = 𝑡)

Naïve Fold
+

SumCheck for 
RangeProof & EvalStmt

Verifier: 𝑂(𝑏log𝑛)

𝑐" =? com6 𝑓"
∧

𝑓" 𝑟" =? 𝑡"
𝑅=>?8
6

Accumulated 
statement

𝑐! =? com6 𝑓!𝑅?@A?B6

Online statement

𝑐$% =? comC 𝑓$%
∧

𝑓$% 𝑟D =? 𝑡D
𝑅=>?8
C

New accumulated
statement

MatMul +
RangePf +
EvalStmt

The knowledge soundness proof is more subtle than intuition
• A malicious prover can adaptively choose the output witness after seeing the challenges
• ⇒ The extracted input witnesses could depend on the sumcheck challenges



Subtleties & Optimizations
Sumcheck over Rings: [CCKP19, BCS21] 
• Ajtai commitments over ring 𝑅< ≔ ℤ<[𝑋]/(𝑋= + 1) for concrete e;iciency
• Small-norm random folding scalar chosen from 𝑆 ⊆ 𝑅<  for negligible soundness error
• Implication: Run Sumcheck over rings 

Supporting Small Modulus:
• We want a small modulus 𝑞	for better efficiency

• Efficient CPU/GPU ops; no big-number arithmetics
• More efficient packing of real-world data

Folding for NP-complete relation

Relation 𝑅	:
(1)  𝑐+,! = com(𝑤+,!)
(2) local computation         is correct
(3) Folding verifier v$% 𝑐!, 𝑐", 𝑐$%; 𝜋$% = 1

needs to express computationArithmetic over a ring → Great fit for Verifiable ML/FHE



ETiciency Estimates

Folding prover:
𝑂( 𝐶JKL )-sized Multi-Scalar-Muls

𝑅/ ≔ ℤ/[𝑋]/(𝑋EF + 1)  ≅ 𝔽/!
!E; 𝑞: a 64-bit prime  

	𝐶&'(: chunk circuit size (e.g. 2"G gates over 𝔽/!)
Norm bound: 𝛽 ≈ 2!E; Base: 𝑏 = 2 

Folding verifier:

native-ops in the circuit over 𝑅2
non-native field ops in the circuit

Competitive circuit sizes

Piecemeal SNARK proof: ≈2 folding instance-witness pairs

Solution: Use a PQ-secure STARK to prove the correctness of the folding statement
< 100KB and 2ms verifier (STIR[ACFY24])

𝑂( 𝐶JKL ) multiplications over 𝑅2 
Compute Ajtai commitments

LatticeFold Existing schemes

Pedersen commimtents

𝑂(𝑏 ⋅ log|𝐶JKL|) hashes and 𝑅2-ops 
Sumcheck verifier ECC scalar-mul + (Sumcheck V)

speed ≈ fast hash

Can reuse fast FHE impl!

< 5KB w/ Hyperplonk+KZG[CBBZ23]

i.e., arithmetic in 𝔽/  as a circuit over 𝔽0

What if it’s still large? 
E.g., splitting a stmt of size 2-) to 2%) chunks →	2%)-sized chunk stmts  



Summary & Open Problems
Takeaway:
• The first lattice-based folding scheme based on Ajtai commitments
• Gives memory-efficient, plausibly PQ-secure SNARKs, with fast provers
• Generic techniques for folding lattice-based commitments w/ norm constraints

Open problems:
• Compact + homomorphic lattice commitments with no norm constraints
• Folding table lookup relations (e.g., from Lasso [Setty-Thaler-Wahby23])
• Efficient implementation

Concurrent work:[Bünz-Mishra-Nguyen-Wang24]

• Purely from hashing; no lattice crypto
• General optimization techniques for piecemeal SNARKs (apply to LatticeFold)
• Larger verifier circuit; only supports bounded-depth folding (attack exists)



Thank you!
https://eprint.iacr.org/2024/257.pdf

Expecting updates soon!

https://eprint.iacr.org/2024/257.pdf

