LatticeFold & its Applications to Succinct Proof Systems

Dan Boneh

Binyi Chen

Stanford University

(zk)SNARKs (zk)SNARK = A succinct ZK proof showing that $\exists w$ s.t. C(x, w) = 0 $\mathbf{S}_{(C) \to (pp_c, vp_c)}$

$\mathbf{P}(pp_C, \mathbf{x}, \mathbf{w}) \qquad \qquad \mathbf{\pi} \qquad \qquad \mathbf{V} \ (vp_C, \mathbf{x}, \pi) \to 0/1$

Properties:

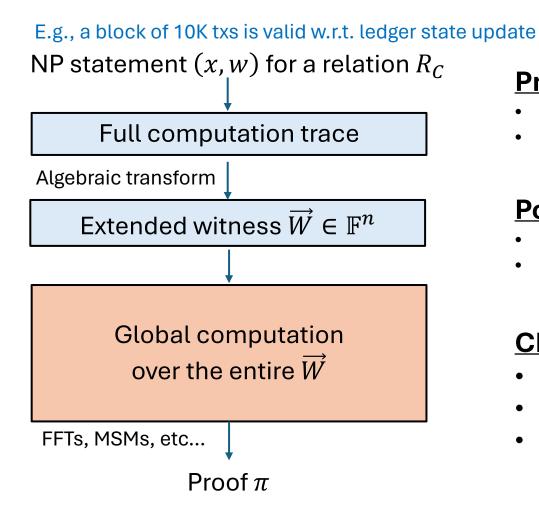
- **Completeness**: honest P can compute valid π
- Knowledge soundness: malicious P* knows valid w if it can generate valid π
- Zero knowledge: π hide the witness w

<u>Key requirements for π :</u> Short (i.e. $|\pi| \ll |w|$) + Fast to verify (e.g. $O(\log|F|)$ time)

Applications: Blockchain, Verifiable zkML/FHE, Fighting disinformation & more [Xie+22, NT16, DB22, KHSS22, BBBF18, XCBFCK22.....]

Challenges: Proving expensive statements (e.g., ML tasks) efficiently

Monolithic SNARKs [Bitansky-Canetti-Chiesa-Tromer12...]



Pre-quantum Schemes:

- Groth16, Plonk [GWC19], Marlin[CHMMVW20], Bulletproof[BBBPWM18]
- HyperPlonk[CBBZ22], Spartan[Setty19], etc...

Post-quantum Schemes:

- STARK[BBHR18],Brakedown[GLSTW21],Ligero[AHIV17], Basefold[ZCF23]...
- Lattice Bulletproofs[BLNS20,ACK21], LaBRADOR[BS22] ...

<u>Challenges for proving expensive computation:</u>

- Expensive global computation
- Large prover memory
- Harder parallelization + less streaming-friendly

Piecemeal SNARKs [Valiant08, BCTV14, BCCT12]

NP statement (x, w) for a relation R_C

e.g., a block of 10K txs is valid w.r.t. the ledger state

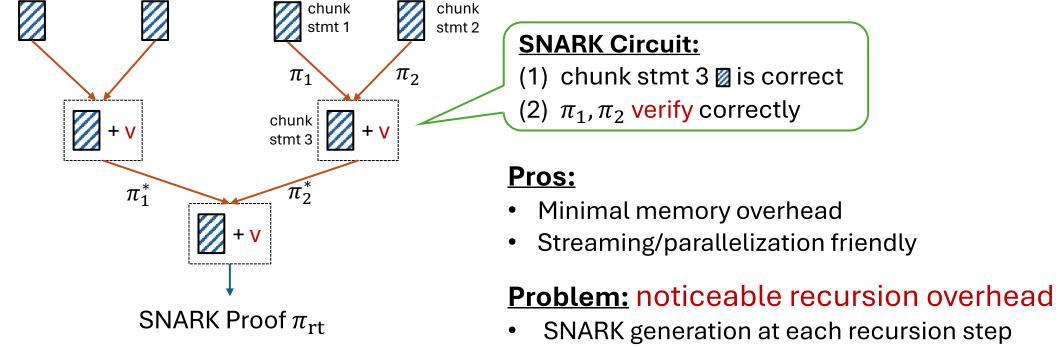
split

Ideas:

e.g. Mangrove[NDCTB24], [Sou23]

- Split the statement into multiple small chunks
- Prove chunk statements using SNARK Recursion

[Bitansky-Canetti-Chiesa-Tromer12]



• Concretely expensive SNARK verifier circuit

Folding Schemes [KST21, BCLMS20, KS23, BC23]

Committed NP Relation:

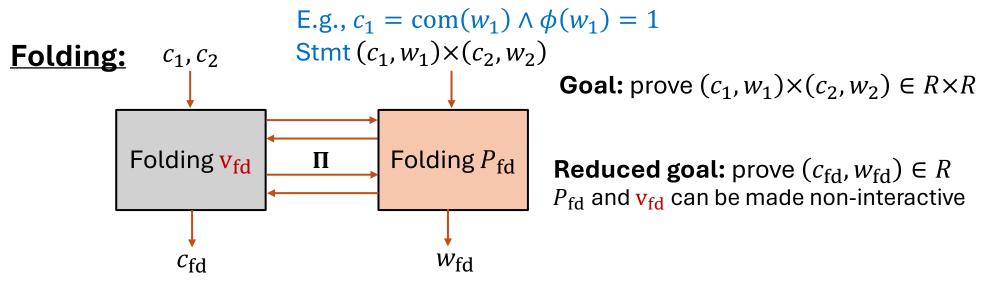
com: A commitment scheme

$$(x, w) \in R \qquad \longrightarrow \qquad (x' = (c, x), w) \in R'$$

if and only if
$$(x, w) \in R \land (c = com(w))$$

Next: We omit public input x for notational convenience

Folding Schemes [KST21,BCLMS20,KS23,BC23]



Completeness: If $(c_1, w_1) \times (c_2, w_2) \in R \times R$, then $(c_{fd}, w_{fd}) \in R$ for honest execution **Knowledge soundness:** If $(c_{fd} w_{fd}) \in R$ for P^* 's output w_{fd} , then P^* also knows w_1, w_2

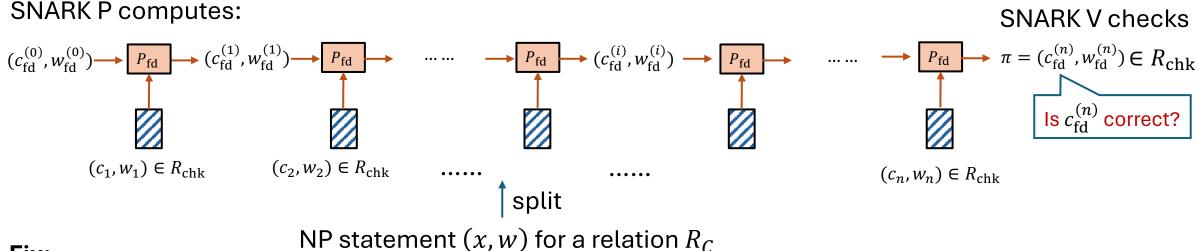
Generalization: Reduction of knowledge [Kothapalli and Parno23]

Input relation: $R_1 \coloneqq R \times R$ Output relation: $R_2 \coloneqq R$ $(c_{in}, w_{in}) \coloneqq (c_1, w_1) \times (c_2, w_2)$ $(c_{out}, w_{out}) \coloneqq (c_{fd}, w_{fd})$

SNARKs from Folding [KST21,BCLMS20,KS23,BC23]

Similar strategies used in SNARGs for P and BARGs[Choudhuru-Jain-Jin21, Waters-Wu22]

<u>Piecemeal SNARK:</u> Prove a chain of computations (can extend to a tree of computations)



<u>Fix:</u>

• Set $x = H(c_n, H(c_{n-1}, ..., H(c_1))$ as public input

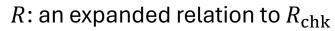
SNARK P also sends (c_1, \dots, c_n)

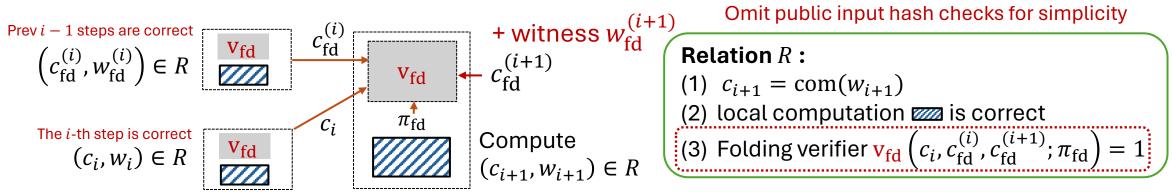
- **Caveat:** proof/verifier complexity linear to *n*
- V checks $x = H(c_n, H(c_{n-1}, ..., H(c_1))$ and computes $c_{fd}^{(n)}$ by *iteratively* calling folding v_{fd} given $c_1, ..., c_n$

Idea: Delegate the verifier work into the folded relation

SNARKs from Folding [KST21,BCLMS20,KS23,BC23]

<u>Piecemeal SNARK:</u> Prove a chain of computations (can extend to a tree of computations)





Why faster than SNARK recursion? A folding scheme could be more efficient than a SNARK

Folding verifier **v**_{fd}:

-
$$\approx \operatorname{check} c_{\mathrm{fd}}^{(i+1)} = c_i + r \cdot c_{\mathrm{fd}}^{(i)}$$
 for some scalar r

• much simpler than a SNARK verifier!

Simpler relation R

Folding prover P_{fd} :

- $w_{\text{fd}}^{(i+1)} = w_i + r \cdot w_{\text{fd}}^{(i)}$: linear combination of field elems
- much faster than a SNARK prover!

Faster folding for relation *R* than SNARK proving

Folding Schemes: State-of-the-Art

Committed NP statement $(c, w) \in R$

- Instance c: a short com(w) to witness w
- com is linearly-homomorphic for easy folding e.g., com(a) + com(b) = com(a + b)

State-of-the-art:

- Pedersen commitments
 - Linearly-homomorphic
 - Pairing-free
 - No trusted setup

Alternative Option:

Recursive SNARKs from hash-based STARKs Less efficient: need full SNARK recursion

Security:

• Based on DLOG assumptions & not *post-quantum* secure

Efficiency:

- Require cycle curves
- Prover: many group-exponentiations over a large field
 - Wasteful as real data units usually small (e.g. 32-bit)
- The folding verifier circuit v_{fd}:
 - Elliptic curve scalar multiplications : (
 - Non-native field-op simulations : (implement arithmetic in \mathbb{F}_q as a circuit over \mathbb{F}_p

Can we construct a folding scheme with

- Post-quantum security
- Ultra-fast prover
- Efficient verifier circuit (e.g., no need for non-native field emulation)

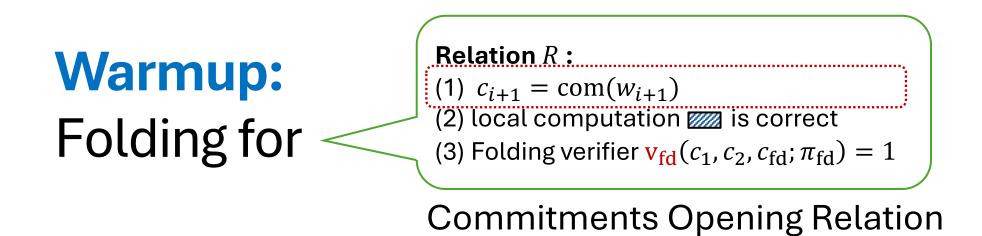
Contributions

LatticeFold: The *first* lattice-based folding scheme

- Based on the Module Short-Integer-Solution (MSIS) assumption
- Competitive efficiency vs existing folding schemes
 - Linear-time prover + succinct verifier circuit
 - Relatively small fields (e.g., 32-bit or 64-bit)
- Native simulation of ring operations in circuits
 - More friendly for applications like verifiable FHEs/MLs

Technical contribution:

New folding techniques for lattice-based commitments

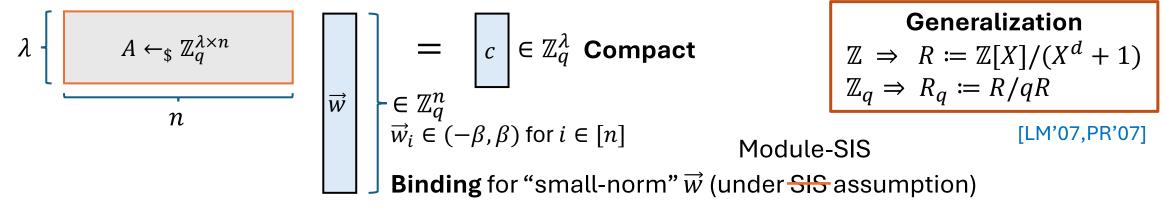


Folding for Ajtai Commitment Openings

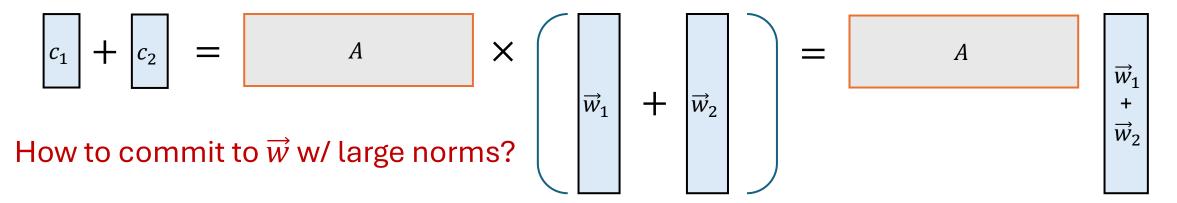
Committed NP statement $(c, w) \in R$

- Instance c: a short com(w) to witness w
- com is linearly-homomorphic for easy folding

speed ≈ Poseidon hash over fast fields [GKRRS19] How about Ajtai *binding* commitments?[Ajt96,99]



Homomorphic property: (over small-norm messages)



Dealing with Arbitrary Witness

How to commit to an arbitrary witness \vec{w} w/ large norms?

Comm open relation: Our full-fledged protocol fold a similar relation

$$\tilde{R}_{ajtai}^{\beta} \coloneqq \{(c; (\vec{w}, \vec{v})) : (c = A\vec{v}) \land (\|v\| < \beta) \land (\vec{w} = G \times \vec{v}) \}$$

$$Gadget matrix$$

$$E.g. w_1 = [1, 2, 2^2, ..., 2^{k-1}] \times \begin{bmatrix} \vec{v}_1 \\ \vec{v}_2 \end{bmatrix}$$

Next, assume that \vec{w} is always **low-norm** in the first place! Comm open relation:

$$R_{\text{ajtai}}^{\beta} \coloneqq \{(c, \vec{w}) : c = A\vec{w} \land ||w|| < \beta\}$$

The infinite norm of $w \in \mathbb{Z}^n$ $||w|| \coloneqq \max(|w_i|)_{i=1}^n$ \vec{v}_k

Folding for Ajtai Commitment Openings

Comm open relation: $R_{aitai}^{\beta} \coloneqq \{(c, \vec{w}) : c = A\vec{w} \land ||w|| < \beta\}$

The infinite norm of $w \in \mathbb{Z}^n$ $||w|| \coloneqq \max(|w_i|)_{i=1}^n$

Naïve approach:

$$(c_{1}, w_{1}) \in R_{ajtai}^{\beta} \longrightarrow \text{Folding } P_{fd} \xrightarrow{r \in \mathbb{Z}_{q} \text{ is a random scalar}} \begin{pmatrix} c_{fd} \coloneqq c_{1} + r \cdot c_{2} \\ w_{fd} \coloneqq w_{1} + r \cdot w_{2} \end{pmatrix} \notin R_{ajtai}^{\beta}$$

Problems:

- $||w_{fd}||$ can be larger than β (even if ||r|| is small)
- $c_{\rm fd}$ no longer binding after $||w_{\rm fd}||$ exceeds threshold Can't support many folding steps

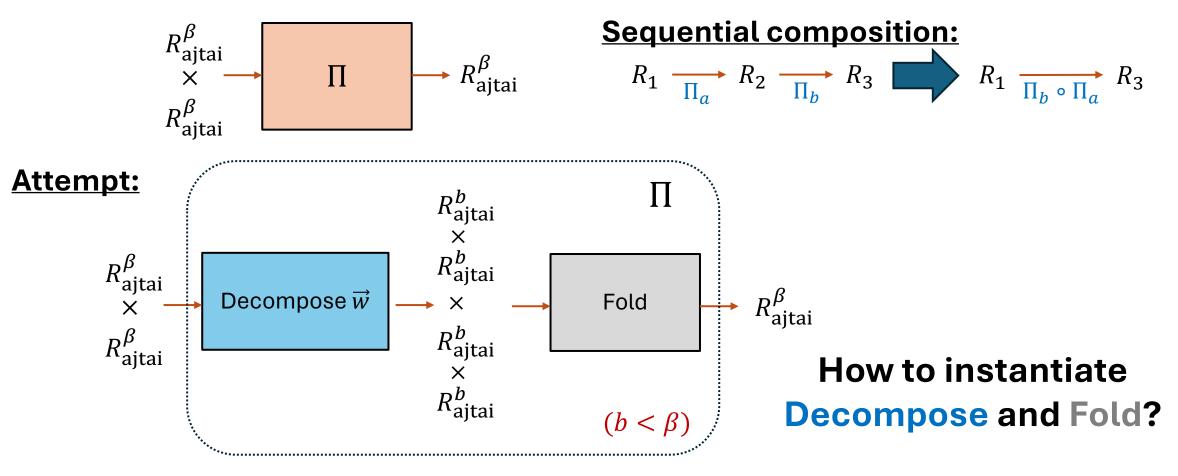
Thoughts:

Make $||w_1||, ||w_2||$ smaller before random LinComb?

Our Strategy

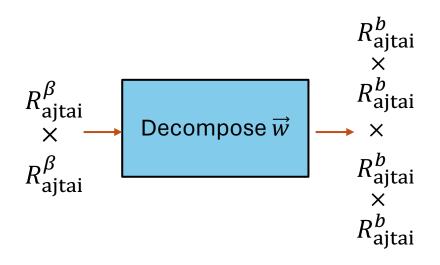
Relation:
$$R_{ajtai}^{\beta} \coloneqq \{(c, \vec{w}) : c = A\vec{w} \land ||w|| < \beta\}$$

<u>Recall our goal</u>: reduction of knowledge Π Nice property of RoK! [Kothapalli and Parno23]

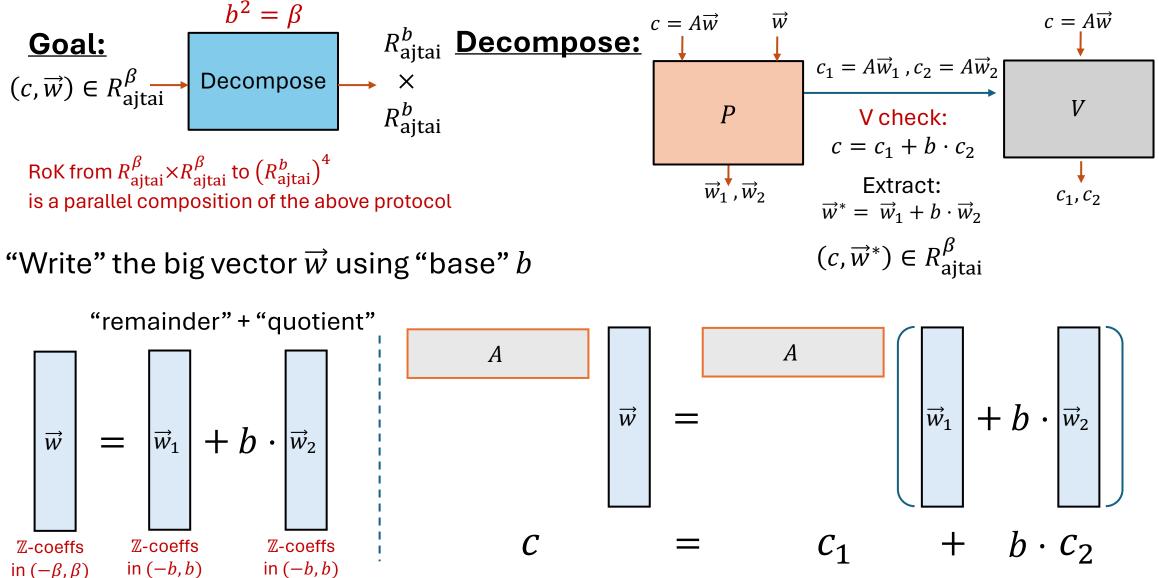


• Decomposition Protocol

• Fold Protocol

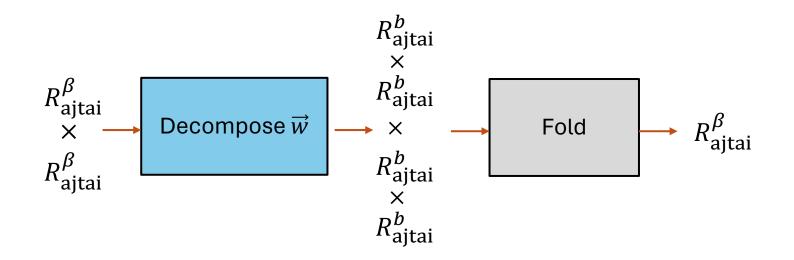


Norm Control with Decomposition

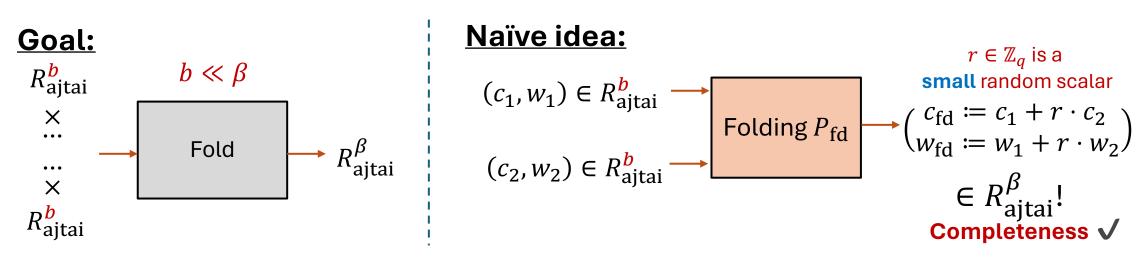


Decomposition Protocol

• Fold Protocol



Folding: Naïve Approach



Knowledge extraction: Rewind P_{fd}^* to obtain w_{fd}^x , w_{fd}^y for $c_{fd}^x = c_1 + r_x \cdot c_2$ and $c_{fd}^y = c_1 + r_y \cdot c_2$ **Extracted witness:** $(c_2, w_2) \notin R_{ajtai}^b$ $(w_{fd}^x = w_1 + r_x \cdot w_2)$ $w_{fd}^y = w_1 + r_y \cdot w_2$ Solve linear eqs for w_1, w_2 $w_2 = (w_{fd}^y - w_{fd}^x) \cdot (r_y - r_x)^{-1}$ The norm can be much larger than b!

Same for w_1

Decomposition Protocol

• Fold Protocol

• Naïve extraction + argue smallness of the extracted witness

Using Range proof: witness $w \in [-b, b]^n$

(Batched) Range proof via Sumcheck

 $c' = c_1 \& c_2$ in folding **Goal:** Given input commitment c', prove knowledge of $\vec{w}' = (f_1, f_2, ..., f_n) \in \mathbb{Z}^n$

- $c' = A \vec{w}'$
- $\vec{w}' = (f_1, f_2, ..., f_n)$ has norm smaller than b
- Efficient (folding) verifier circuit

Our strategy: Combine naïve folding & extraction + Range proof protocol

- $c' = A\vec{w}'$ (achieved by naïve folding + extraction)
- $\vec{w}' = (f_1, f_2, \dots, f_n)$ has small norms

Our solution: A range-proof protocol from Sumcheck

Review of the Sumcheck Protocol [LFKN92]

Goal: Given a "committed" *m*-variate poly $g(x_1, ..., x_m)$, convince V that $\sum_{x \in \{0,1\}^m} g(\vec{x}) = s$

Naïve verifier: query g at every $x \in \{0,1\}^m$ and check the sum

 $\Omega(2^m)$ complexity: (

Sumcheck protocol [LFKN92]

- *m*-round interactive protocol between P and V
 - V sends a random challenge $r_i \in \mathbb{F}$ in each round
- At the end of the protocol, V queries g at a single random point

Sumcheck:
$$\sum_{\vec{x} \in \{0,1\}^m} g(\vec{x}) = s$$

Sumcheck protocol [LFKN92] $O(m)$ -time verifier
EvalCheck: $g(\vec{r}_1, ..., \vec{r}_m) = t'$ at a random $\vec{r} \in \mathbb{Z}_q^m$

History: Key ingredient for proving $PH \subseteq IP$ and inspires the proof of IP = PSPACE

<u>Goal</u>: Given input commitment c', prove knowledge of $\vec{w}' = (f_1, f_2, ..., f_n) \in \mathbb{Z}^n$

• $\vec{w}' = (f_1, f_2, ..., f_n)$ has norm smaller than b

Our solution: A range-proof protocol from Sumcheck

Step 1: Rephrase the range-proof statement as a Sumcheck statement **Step 2:** Construct a folding protocol for the Sumcheck statement

Step 1: Reducing Range proof to Sumcheck

Can extend to elements in ring **Range proof:** Prove knowledge of a witness $\vec{w}' = (f_1, f_2, \dots, f_n) \in \mathbb{Z}^n$ s.t. $R = \mathbb{Z}[X]/(X^d + 1)$ $f_1 \in \mathbb{Z}$ f_2 f_n f_{n-1} $\in (-b,b)$ $\in (-b, b) \subseteq \mathbb{Z}$ $\in (-b, b)$ $\in (-b, b)$ $h(x) = 0 \Leftrightarrow x \in (-b, b)$ $h(x) \coloneqq x(x+1) \cdot (x-1) \cdots (x+(b-1))(x-(b-1))$ over $\mathbb{Z}_q \coloneqq \left|-\frac{q}{2}, \frac{q}{2}\right|$ and q > 2b is a prime $h(f_2) = 0$ $h(f_1) = 0$ $h(f_{n-1}) = 0$ $h(f_n) = 0$ • • • ... Embed \vec{w}' to the Boolean hypercube of a multilinear polynomial $f(x_1, ..., x_{\log n})$ \vec{x} 11 ... 11 00...01 11 ... 10 00...00 ••• ••• ... $h(f_1 f_1) = 0$ $h(f_2 f_2 = 0$ $h(f_n f_{n_1}) = 0$ $h(f_n f_n) = 0$ $h(ff(\vec{x}))$

Zero-check to sum-check [CBBZ23, Setty20]

Sumcheck: prove that $\Sigma_{\vec{x} \in \{0,1\}^{\log n}} g(\vec{x}) = 0$ where $g(\vec{x}) \coloneqq h(f(\vec{x})) \cdot eq_{\alpha}(\vec{x})$ for a rand $\alpha \in \mathbb{Z}_q^{\log n}$

Step 2: Sumcheck Folding

Range proof: witness
$$\vec{w}' = (f_1, f_2, ..., f_n) \in [-b, b]^n$$

 $\widehat{\mathbf{v}} g(\vec{x}) \coloneqq h(f(\vec{x})) \cdot eq_\alpha(\vec{x})$
Sumcheck: $\sum_{\vec{x} \in \{0,1\}^{\log n}} g(\vec{x}) = 0$
 $\widehat{\mathbf{v}}$ **Sumcheck protocol** [LFKN92]
Prover time: $\approx O(bn)$
Verifier time: $O(blogn)$
EvalCheck: $g(\vec{r}) = t'$ at a random $\vec{r} \in \mathbb{Z}_q^{\log n}$
EvalCheck: $f(\vec{r}) = t$ (and verifier can check $g(\vec{r}) = h(t) \cdot eq_\alpha(\vec{r}) = t'$ itself)

<u>Problem</u>: How to check $f(\vec{r}) = t$ given the comm of f?

• Send $(f_1, f_2, ..., f_n)$ to the folding verifier to check it? O(n) folding verifier : (

Observation: EvalStmt $f(\vec{r}) = t$ is easy to fold!

Folding Evaluation Statements

Observation: $f(\vec{r}) = t$ is easy to fold!

Multilinear extension: $f(\vec{r}) = \sum_{\vec{x} \in \{0,1\}^{\log n}} f(\vec{x}) \cdot eq_{\vec{r}}(\vec{x})$ efficiently computable

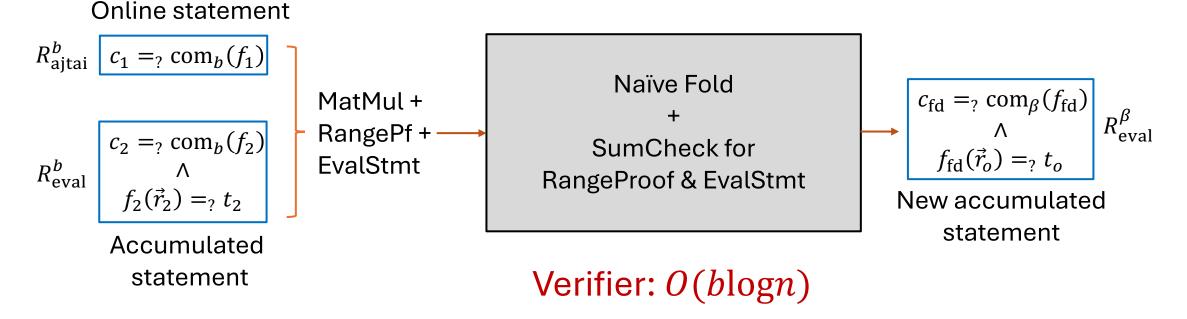
Translate to
SumChk Stmt
$$\begin{bmatrix} f_1(\vec{r}_1) = t_1 & \text{for rand } \rho \\ f_2(\vec{r}_2) = t_2 & \text{for rand } \rho \\ f_2(\vec{r}_2) = t_2 & \text{for rand } \rho \\ f_2(\vec{r}_0) = t_0 &$$

How does it help to check $f(\vec{r}) = t$ given the comm of f?

Fold the evaluation statement without checking!

Folding for Ajtai Commitment Openings

Solution: Expand relation R_{ajtai} to include the evaluation statement $(c = com(f)) \land (f(\vec{r}) = t)$



The knowledge soundness proof is more subtle than intuition

- A malicious prover can *adaptively* choose the output witness after seeing the challenges
- ⇒ The extracted input witnesses could *depend on* the sumcheck challenges

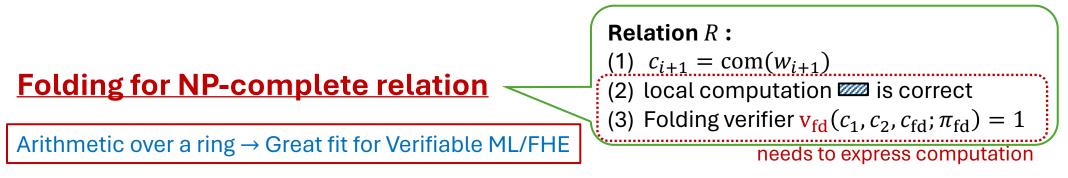
Subtleties & Optimizations

Sumcheck over Rings: [CCKP19, BCS21]

- Ajtai commitments over ring $R_q \coloneqq \mathbb{Z}_q[X]/(X^d + 1)$ for concrete efficiency
- Small-norm random folding scalar chosen from $S \subseteq R_q$ for negligible soundness error
- Implication: Run Sumcheck over rings

Supporting Small Modulus:

- We want a small modulus q for better efficiency
 - Efficient CPU/GPU ops; no big-number arithmetics
 - More efficient packing of real-world data



Efficiency Estimates

 $R_q \coloneqq \mathbb{Z}_q[X]/(X^{64} + 1) \cong \mathbb{F}_{q^4}^{16}$; *q*: a 64-bit prime C_{chk} : chunk circuit size (e.g. 2^{20} gates over \mathbb{F}_{q^4}) Norm bound: $\beta \approx 2^{16}$; Base: b = 2

LatticeFold

Speed \approx fast hashFolding prover:Compute Ajtai commitments $O(|C_{chk}|)$ multiplications over R_q Can reuse fast FHE impl!

Existing schemes

Pedersen commimtents $O(|C_{chk}|)$ -sized Multi-Scalar-Muls

Folding verifier:Sumcheck verifier $O(b \cdot \log|C_{chk}|)$ hashes and R_q -opsnative-ops in the circuit over R_q Competitive circuit sizes

ECC scalar-mul + (Sumcheck V) **non-native field ops** in the circuit i.e., arithmetic in \mathbb{F}_q as a circuit over \mathbb{F}_p

Piecemeal SNARK proof: \approx 2 folding instance-witness pairs What if it's still large? E.g., splitting a stmt of size 2⁴⁰ to 2²⁰ chunks \rightarrow 2²⁰-sized chunk stmts

Solution: Use a PQ-secure STARK to prove the correctness of the folding statement < 100KB and 2ms verifier (STIR[ACFY24]) < 5KB w/ Hyperplonk+KZG[CBBZ23]

Summary & Open Problems

Takeaway:

- The *first* lattice-based folding scheme based on Ajtai commitments
- Gives memory-efficient, plausibly PQ-secure SNARKs, with fast provers
- Generic techniques for folding lattice-based commitments w/ norm constraints

Open problems:

- *Compact + homomorphic* lattice commitments with no norm constraints
- Folding table lookup relations (e.g., from Lasso [Setty-Thaler-Wahby23])
- Efficient implementation

Concurrent work:[Bünz-Mishra-Nguyen-Wang24]

- Purely from hashing; no lattice crypto
- General optimization techniques for piecemeal SNARKs (apply to LatticeFold)
- Larger verifier circuit; only supports bounded-depth folding (attack exists)

Thank you! https://eprint.iacr.org/2024/257.pdf Expecting updates soon!