ProtoStar: Generic Efficient IVC Schemes

Benedikt Bünz Binyi Chen

Espresso Systems

Incrementally Verifiable Computation (IVC)

Goal: Prove correctness of (non-deterministic) iterative computation

Prove that $\exists w_1, \ldots w_m, z_1, \ldots z_{m-1} : \forall i \in [m] F(z_{i-1}, w_i) = z_i$

Examples

- Verifiable delay functions: $VDF(z_0) = F^T(z_0)$
- Succinct blockchain (e.g. Mina): z = ledger state; w = txs in block i
- zkVM, zkEVM: instruction set $\mathcal{F} = \{\mathbf{op_1}, \dots, \mathbf{op_k}\}$

Incrementally Verifiable Computation (IVC)

IVC [Valiant08]: Prover P_F and Verifier V_F such that

Completeness:

Given accepted proof π_{i-1} for input z_{i-1} , can generate valid proof π_i for $z_i = F(z_{i-1}, w_i)$

Knowledge soundness:

Can extract the witness (i.e. intermediate w and z) from the final output and the final IVC proof

Generalization: Proof-Carrying Data (PCD)

Prove chain of computations -> prove tree/DAG of computations

Why not directly using SNARKs?

Why IVC?

Succinct Non-interactive Arg-of-Knowledge (SNARKs) are also succinct

IVC's Advantages over SNARKs

- Small prover memory and preprocessing overhead (step func **F** is small)
- Enable proving dynamic number of calls to step function **F**
- Easier parallel proving (e.g., with PCD)
- and more.....

IVC from SNARKs [Val08, BCCT13, BCTV14, COS20]

Caveats:

- expensive recursive verifier circuit
- expensive pairing-friendly cycles/trusted setup

Split Accumulation/Folding [BCLMS20, KST21]

Acc/Folding: reduce the task of proving **two** NP instances into proving a **single** instance

Completeness:

If $\mathbf{X}_{1'}\mathbf{X}_2$ satisfiable, then \mathbf{X} satisfiable

Knowledge Soundness:

If prover knows valid **W**, then it also knows valid

w₁,**w**₂

IVC from Split Accumulation/Folding [BCLMS20, KST21]

Limitations of State-of-the-Arts

Existing Acc/Folding schemes

- Use R1CS constraint systems
 - Less expressive per gate (e.g., no high-degree/lookup gate support)
 - Nova follow-ups (e.g. Sangria, Origami, etc) support Plonk/lookup gates, but not efficient enough
- Do not support efficient circuit branching (except [KS22])
 - Can't select step F (e.g. EVM opcode) at runtime without a circuit that is linear in all possible Fs (e.g. the EVM opcode set)
- Ad-hoc constructions with different proofs
 - No unified and general framework

Essential for zkEVM applications!

Our Contributions

• General recipe for IVC/PCD schemes

• Can fold **any** special-sound multi-round protocols **efficiently** (Nova is a special case)

• Efficient folding/IVC with highly expressive gates

- high-degree gates + lookup + non-uniform computation
 - Easily extendable to support Customizable Constraint System (CCS) [STW23]
- Dominant IVC proving cost: (no dependence on gate degree and table size)
 - 1 MSM of size |w|
 - Recursive circuit: 3 G-exps

	Protostar	HyperNova	SuperNova
Language	Degree d Plonk/CCS	Degree d CCS	R1CS (degree 2)
Non-uniform	yes	no	yes
P native	$egin{array}{c} \mathbf{w} \mathbb{G}\ O(\mathbf{w} d\log^2 d)\mathbb{F} \end{array}$	$egin{array}{c} \mathbf{w} \mathbb{G}\ O(\mathbf{w} d\log^2 d)\mathbb{F} \end{array}$	$ \mathbf{w} \mathbb{G}$
extra P native w/ lookup	$O(\ell_{\sf lk}){\mathbb G}$	$O(T) \mathbb{F}$	N/A
P recursive	$\begin{matrix} \underline{3}\mathbb{G} \\ (d+O(1))H + H_{in} \\ (d+O(1))\mathbb{F} \end{matrix}$	$ \begin{array}{c} 1\mathbb{G} \\ d\log nH + H_{in} \\ O(d\log n)\mathbb{F} \end{array} $	$\begin{array}{c} 2\mathbb{G} \\ H_{in} + O_{\lambda}(1)H + 1H_{\mathbb{G}} \end{array}$
extra P recursive w/ lookup	1H	$ \frac{\overline{O(\log T)} H}{O(\ell_{lk} \log T) \mathbb{F}} $	N/A

Significantly fewer hashes/F-ops in the circuit

General Recipe for Folding/Accumulation

General Recipe for Folding/Acc

Goal: Fold instances for NP Relation R

Step 1: Build a multi-round special-sound protocol **I** for relation **R** usually easy

Step 2: Transform Π to a non-interactive argument NARK(Π)

Innovation: generic & efficient transform

Step 3: Build a folding/acc scheme for the verifier check of NARK(Π)

General Recipe for Folding/Acc

Step 1: Build a multi-round special-sound protocol **I** for relation **R usually easy**

Step 1.a: Transform Π to $CV[\Pi]$ with a compressed verifier for relation R

Step 2: Transform Π to a non-interactive argument NARK(Π)

Innovation: generic & efficient transform

Step 3: Build a folding/acc scheme for the verifier check of NARK(Π)

General Recipe for Folding/Acc

Step 1: Build a multi-round special-sound protocol **T** for relation **R** usually easy

Step 1.a: Transform Π to **CV**[Π] with a compressed verifier for relation R

Step 2: Transform CV[Π] to a non-interactive argument NARK(CV[Π])

Innovation: generic & efficient transform

Step 3: Build a folding/acc scheme for the verifier check of NARK(CV[Π])

of G-ops independent of the degree of the verifier check!

Special-Sound Protocols: Example

Check: P knows **a**, **b**, **c** s.t. $\mathbf{a}_i * \mathbf{b}_i = \mathbf{c}_i$ for all $i \in [n]$

k-special-sound:

can extract valid witness from ${\bf k}$ accepting transcripts

(**k**₁, ..., **k**_u)-special-soundness for multi-round protocols

a, b, c

R: # of prover moves = 1
D: max degree of each check = 2
L: # of verifier checks = n

Why easy to design?

No need for *succinct* communication/verifier No need to be *non-interactive* check $\mathbf{a}_i * \mathbf{b}_i = \mathbf{c}_i$ for all $i \in [n]$

1-special-sound!

Transform to Non-Interactive Argument of Knowledge

[AFK22]: Special-soundness of $\Pi \Rightarrow$ Knowledge-soundness of NARK[Π]

Folding/Acc for **NARK[Π]**'s verifier checks

ignore public input for simplicity

R: # of prover movesd: max degree of each checkL: # of verifier checks

 $ACC.x = \left\{ \vec{\mathbf{C}}', \vec{\mathbf{r}}'; \quad \mathbf{E} \right\}$

ACC.w =
$$\left\{ \vec{\mathbf{m}'} \right\}$$

Acc's chk: $\vec{f_d} \left(\vec{\mathbf{m}'}, \vec{\mathbf{r}'} \right) \stackrel{?}{=} \vec{e}$

Goal: Fold ACC and π into a new ACC

Can generalize to fold two <u>ACCs</u>

 $\begin{array}{c} \text{commitments} \quad \text{chals} \\ \boldsymbol{\pi}.\boldsymbol{\mathsf{X}} = \left\{ \vec{\mathbf{C}} = \left[C_i \right]_{i=1}^{R}, \vec{\mathbf{r}} = \left[r_i \right]_{i=1}^{R-1} \right\} \end{array}$

$$oldsymbol{\pi}.oldsymbol{\mathsf{W}}=\left\{ec{\mathbf{m}}=[m_i]_{i=1}^R
ight\}$$
 prover msgs

NARK vfy chk: $ec{f_d} (ec{\mathbf{m}}, ec{\mathbf{r}}) \stackrel{?}{=} 0^L$

terms in $\mathbf{f}_{\mathbf{d}}$ all have deg \mathbf{d} for simplicity

For inhomogeneous **f**_d: add a slack variable **u** = **1**

Folding/Acc for NARK[Π]'s verifier checks d: max degree of each check L: # of verifier checks

ACC.x = $\left\{ \left(\vec{\mathbf{C}}', \vec{\mathbf{r}}' \right); \mathbf{E} \right\}$ $\pi.x = \left\{ \left(\vec{\mathbf{C}}, \vec{\mathbf{r}} \right) \right\}$

$$egin{aligned} &ec{f_d}ig(ec{\mathbf{m}'},ec{\mathbf{r}'}ig) \stackrel{?}{=} ec{e} \ &ec{f_d}ig(ec{\mathbf{m}},ec{\mathbf{r}}ig) \stackrel{?}{=} 0^L \end{aligned}$$

Example:

$$L = 1, d = 2$$

$$f_2(\vec{\mathbf{m}}, \vec{\mathbf{r}}) = \vec{\mathbf{r}}_1^2$$

$$= \left(X \cdot \vec{\mathbf{r}}_1 + \vec{\mathbf{r}'}_1\right)^2 = \vec{\mathbf{r}'}_1^2 + (\dots)X + \vec{\mathbf{r}}_1^2 X^2$$

$$Acc chk$$
NARK vfy chk

Folding/Acc for NARK[Π]'s verifier checks d: max degree of each check L: # of verifier checks

Compressing Verification Checks for High-deg Gates

 $\left[\mathbf{E_{j}} \leftarrow cm(ec{e}_{j})
ight]_{j=1}^{d-1}, ext{ where } ec{e}_{j} \in \mathbb{F}^{L}$

L: # of verifier checks

Idea: Can we get a new SS protocol with single chk (i.e. L = 1)? The folding can use identity commitment without any G-ops!

Example:
$$V_{sps}^{(1)}(x_1, x_2) = x_1 + x_2 \stackrel{?}{=} 0$$

 $V_{sps}^{(2)}(x_1, x_2) = x_1 \cdot x_2 \stackrel{?}{=} 0$
 $V_{sps}^{(1)}(x_1, x_2) + \beta \cdot V_{sps}^{(2)}(x_1, x_2) = (x_1 + x_2) + \beta x_1 x_2 \stackrel{?}{=} 0$
for random β

In general: Acc's chk:

O(dL) **G-ops** to commit **E**.

Compressing Verification Checks for High-deg Gates **deg** = d+2 The NARK check: **Caveat:** Acc prover needs to commit to O(L) terms $V_{sps}'\left(\vec{\mathbf{m}'},\vec{\mathbf{r}'},[B_j]\right) = \sum_{j=1}^{L} B_j \cdot V_{sps}^{(j)}\left(\vec{\mathbf{m}'},\vec{\mathbf{r}'}\right) \quad \square \quad V_{sps}'\left(\vec{\mathbf{m}'},\vec{\mathbf{r}'},\left[B_j,B_j'\right]\right) = \sum_{i=1}^{\sqrt{L}} \sum_{i=1}^{\sqrt{L}} B_i B_j' \cdot V_{sps}^{\left(i+j\sqrt{L}\right)}\left(\vec{\mathbf{m}'},\vec{\mathbf{r}'}\right)$ **Fixed SS proto:** no overhead R+2 **G-exps** to fold **C**_i and **E Acc Verifier:** w/lookup! Ρ m₁ r₁ $O(\sqrt{\ell})$ extra G-exps to Acc Prover: commit m_{R+1} m_R Acc Chks: $(\sqrt{\ell})$ deg-2 checks i = 1..sqrt(L): for correctness of $[B_i, B'_i]$ $m_{R+1} = [B_i | B'_i]_{i=1...sqrt(L)}$ check {B_i, B'_i} $B := \beta^i$ B' = $\beta^{i\sqrt{L}}$ **Sol:** add **1** sep comm for the err vec w/ len $O(\sqrt{\ell})$

Summary of the General Recipe

Can use [NguBonSet23] for efficient IVC compilation

How to construct \prod_{sps} for expressive constraint systems?

Efficient Special-sound Protocols for Expressive Relations

Permutation Check/High-deg Gates/Circuit Selection

- We obtain 1-move special-sound protocols for
 - Permutation relation/High-degree gate-check relation
 - Non-uniform circuit selection relation
 - Customizable constraint system (CCS) [STW23]
- The schemes are trivial as the constraints are algebraic
 - P sends witness, V checks the algebraic equations

A justification that

Step 1: Build a multi-round special-sound protocol **I** for relation **R usually easy**

What if the constraints are not algebraic?

Lookup [Hab22] $\exists [m_i]_{i=1}^T : \sum_{j=1}^{c} \left| \frac{1}{X + w_i} \right| = \sum_{j=1}^{T} \left| \frac{m_i}{X + t_i} \right|$ lookup оокир $\{w_i\}_{i=1}^\ell \ \subseteq \ \{t_i\}_{i=1}^T$ table vals **Great Feature:** Special-sound protocol Π_{LK} for \mathcal{R}_{LK} Prover messages are **sparse!** Prover $\mathsf{P}(\mathcal{C}_{\mathbf{LK}}, \mathbf{w} \in \mathbb{F}^{\ell})$ Verifier $V(\mathcal{C}_{LK})$ Compute $\mathbf{m} \in \mathbb{F}^T$ such that $\mathbf{m}_i \coloneqq \sum_{i=1}^{\infty} \mathbb{1}(\mathbf{w}_j = \mathbf{t}_i) \forall i \in [T]$ Efficient **IVC** prover w/ cheap $r \leftarrow \mathbb{F}$ prv-msq comms computation? Compute $\mathbf{h} \in \mathbb{F}^{\ell}, \, \mathbf{g} \in \mathbb{F}^{T}$ $\mathbf{h}_i \coloneqq \frac{1}{\mathbf{w}_i + r} \forall i \in [\ell]$ **Challenges:** $\mathbf{g}_i \mathrel{\mathop:}= rac{\mathbf{m}_i}{\mathbf{t}_i + r} orall i \in [T]$ hg Acc msg/err-vec are not sparse $\sum_{i=1}^{\ell} \mathbf{h}_i \stackrel{?}{=} \sum_{i=1}^{T} \mathbf{g}_i$ Solution: Update msg/err-vec **comms** $\mathbf{h}_i \cdot (\mathbf{w}_i + r) \stackrel{?}{=} 1 \forall i \in [\ell]$ **Extend to vector-lookups** homomorphically $\mathbf{g}_i \cdot (\mathbf{t}_i + r) \stackrel{?}{=} \mathbf{m}_i \forall i \in [T]$

Putting the Pieces Together

Special-sound protocols for ProtoStar/ProtoStar_{ccs}: Compositions of the building block SS protocols

Key Takeaway

- **General** recipe for **efficient** folding/accumulation schemes
- Simple Special-sound protocols for expressive relations
- ProtoStar IVC: **3 G-exps** in the recursive circuit for supporting
 - arbitrary high-deg gates
 - arbitrarily large lookup tables
 - \circ ~ arbitrarily many opcodes in the VM ~

	Protostar	HyperNova	SuperNova
Language	Degree d Plonk/CCS	Degree d CCS	R1CS (degree 2)
Non-uniform	yes	no	yes
P native	$egin{array}{c} \mathbf{w} \mathbb{G}\ O(\mathbf{w} d\log^2 d)\mathbb{F} \end{array}$	$egin{array}{c} \mathbf{w} \mathbb{G}\ O(\mathbf{w} d\log^2 d)\mathbb{F} \end{array}$	$ \mathbf{w} \mathbb{G}$
extra P native w/ lookup	$O(\ell_{lk})\mathbb{G}$	$O(T) \mathbb{F}$	N/A
P recursive	$ \begin{array}{c} 3\mathbb{G} \\ (d+O(1))H + H_{in} \\ (d+Q(1))\mathbb{F} \\ (d+Q(1))\mathbb{F} \end{array} $	$ \begin{array}{c} 1 \mathbb{G} \\ d \log n \mathbb{H} + \mathbb{H}_{\text{in}} \\ \underline{O}(d \log n) \mathbb{F} \end{array} $	$\begin{array}{c} 2\mathbb{G}\\ H_{in}+O_{\lambda}(1)H+1H_{\mathbb{G}}\end{array}$
extra P recursive w/ lookup	1H	$O(\log T) H \\ O(\ell_{lk} \log T) \mathbb{F}$	N/A

Highly practical with
[NguBonSet23] IVC compiler

Significantly fewer hashes & non-native F-ops in the circuit

Thanks!

https://eprint.iacr.org/2023/620.pdf

Non-uniform Circuit Selection

Definition 14. For an integer n the relation \mathcal{R}_{select} is the set of tuples $(\mathbf{b}, pc) \in \mathbb{F}^n \times \mathbb{F}$ such that $b_i = 0 \forall i \in [n] \setminus \{pc\}$ and if $pc \in [n]$ then $b_{pc} = 1$. **Protocol** $\Pi_{mccs+} = \langle \mathsf{P}(\mathcal{C}_{mccs+}, \mathsf{pi}, \mathbf{w}), \mathsf{V}(\mathcal{C}_{mccs+}, \mathsf{pi} = (pc \in [I], \mathsf{pi}')) \rangle$: 1. P sends V vector $\mathbf{b} = (0, ..., 0, b_{pc} = 1, 0, ..., 0) \in \mathbb{F}^{I}$. 2. V checks that $b_i \cdot (1-b_i) \stackrel{?}{=} 0$ and $b_i \cdot (i-pc) \stackrel{?}{=} 0$ for all $i \in [I]$, and $\sum_{i \in [I]} b_i \stackrel{?}{=} 1$. 3. P computes vector $\mathbf{m} \in \mathbb{F}^T$ such that $\mathbf{m}_i := \sum_{j \in L_{nc}} \mathbb{1}(\mathbf{w}_j = \mathbf{t}_i) \forall i \in [T]$. 4. P sends V vectors w, m. 5. V computes $\mathbf{z} = (1, pi, \mathbf{w}) \in \mathbb{F}^n$ and checks that $\sum_{k=1}^{r} b_k \cdot \sum_{i=1}^{q} c_{i,k} \cdot \bigcirc_{j \in S_{i,k}} M_{j,k} \cdot \mathbf{z} = \mathbf{0}^m \,.$ 6. V samples and sends P random challenge $r \leftarrow \mathbb{F}$. 7. P computes vectors $\mathbf{h} \in \mathbb{F}^{\ell_{lk}}$, $\mathbf{g} \in \mathbb{F}^T$ such that $\mathbf{h}_i := \frac{1}{\mathbf{w}_{I_{i-1}[i]} + r} \forall i \in [\ell_{\mathsf{lk}}], \qquad \mathbf{g}_i := \frac{\mathbf{m}_i}{\mathbf{t}_i + r} \forall i \in [T].$ 8. V checks that $\sum_{i=1}^{\ell_{lk}} \mathbf{h}_i \stackrel{?}{=} \sum_{i=1}^{T} \mathbf{g}_i$ and $\sum_{j=1}^{I} b_j \cdot \left[\mathbf{h}_i \cdot (\mathbf{w}_{L_j[i]} + r) \right] \stackrel{?}{=} 1 \quad \forall i \in [\ell_{\mathsf{lk}}],$ $\mathbf{g}_i \cdot (\mathbf{t}_i + r) \stackrel{?}{=} \mathbf{m}_i \quad \forall i \in [T].$

Folding/Acc for **NARK[Π]**'s verifier checks

ignore public input for simplicity

R: # of prover movesd: max degree of each checkL: # of verifier checks

 $ACC.x = \left\{ \vec{C'}, \vec{r'}, u; E \right\}$

ACC.w =
$$\left\{ \vec{\mathbf{m}'} \right\}$$

Acc's chk:
$$\sum_{j=0}^{d} u^{d-j} \cdot \vec{f_j} \left(\vec{\mathbf{m}'}, \vec{\mathbf{r}'} \right) \stackrel{?}{=} \vec{e}$$

Goal: Fold ACC and π into a new ACC

Can generalize to fold two <u>ACCs</u>

 $\begin{array}{c} \text{commitments} \quad \text{chals} \\ \boldsymbol{\pi}.\boldsymbol{\mathsf{X}} = \left\{ \vec{\mathbf{C}} = [C_i]_{i=1}^R, \vec{\mathbf{r}} = [r_i]_{i=1}^{R-1}, \ \boldsymbol{u} = \boldsymbol{1} \right\} \end{array}$

$$oldsymbol{\pi}.oldsymbol{\mathsf{W}} = \left\{ ec{\mathbf{m}} = \left[m_i
ight]_{i=1}^R
ight\}$$
 prover msgs

NARK vfy chk:

$$\sum_{j=0}^d ec{f_j}ig(ec{\mathbf{m}},ec{\mathbf{r}}ig) \stackrel{?}{=} 0^L$$

terms in ${\bf f}_{\bf j}$ all have deg ${\bf j}$

Folding/Acc for NARK[Π]'s verifier checks d: max degree of each check L: # of verifier checks

Example:

Folding/Acc for NARK[Π]'s verifier checks d: max degree of each check L: # of verifier checks

