ProtoStar: Generic
Efficient IVC Schemes

Benedikt Binz Binyi Chen

Espresso Systems

Incrementally Verifiable Computation (IVC)

Goal: Prove correctness of (hon-deterministic) iterative computation

Examples
e \Verifiable delay functions: VDF(z) = F7 (%)
® Succinct blockchain (e.g. Mina): z, = ledger state; w, = txs in block i
e 7zkVM, zkEVM: instruction set F = {opy,...,0opk}

Incrementally Verifiable Computation (IVC)

IVC [Valiant08]: Prover P_ and Verifier V_ such that

w1

Z1
20

F Uy!

Completeness:

w2

Z2

T2

W,

I

P

F

Given accepted proof ;_; for input z;_;, can generate valid proof 7; for z; = F(z;_1, w;)

Knowledge soundness:
Can extract the witness (i.e. intermediate w and z) from the final output and the final IVC proof

Generalization: Proof-Carrying Data (PCD)

Prove chain of computations -> prove tree/DAG of computations

Why not directly using SNARKS?

Why IVC?
Succinct Non-interactive Arg-of-Knowledge (SNARKSs) are also succinct

IVC’s Advantages over SNARKSs

e Small prover memory and preprocessing overhead (step func F is small)
e Enable proving dynamic number of calls to step function F

e Easier parallel proving (e.g., with PCD)

e and more......

IVC from SNARKSs [Val08, BCCT13, BCTV14, COS20]

IVCP,
T Can we construct IVCs
/) w/o SNARKSs?
i /' SNARKP) i ey,
i Circuit i “““““““““““““““
\{:] SNARK.V 0/1
| SNARK.V | | J ;
-1 — - — - — |
Caveats:

® expensive recursive verifier circuit
® expensive pairing-friendly cycles/trusted setup

Split Accumulation/Folding [BCLMS20, KST21]

NP RelationR: (x , w) € R Acc/Folding: reduce the task of proving two
/‘ N NP instances into proving a single instance
Small Large

Claim Witness
More efficient Completeness:

than SNARK. V! If X,,X, satisfiable, then X
satisfiable

1 - X

F
B

w, .

W,

Knowledge Soundness:

If prover knows valid w,
then it also knows valid

Wi W,

0/1

IVC from Split Accumulation/Folding [BCLMS20, KST21]

smaller circuit

IVC.PF than SNARK.V!

mmmme- // IVC.Ve X.: claim that Cz_)=z

Circuit \: ACC..x: claim that C'(z)=z,

0/1

Acc.D may not be succinct:
Can use SNARK to delegate
the computation of Acc.D

Limitations of State-of-the-Arts

Existing Acc/Folding schemes

e Use RI1CS constraint systems
o Less expressive per gate (e.g., no high-degree/lookup gate support)
o Nova follow-ups (e.g. Sangria, Origami, etc) support Plonk/lookup
gates, but not efficient enough
e Do not support efficient circuit branching (except [KS22])
o Can't select step F (e.g. EVM opcode) at runtime without a circuit that
is linear in all possible Fs (e.g. the EVM opcode set)

e Ad-hoc constructions with different proofs
o No unified and general framework

\

Essential for
> zKEVM
applications!

/

Our Contributions

General recipe for IVC/PCD schemes

o Can fold any special-sound multi-round protocols efficiently (Nova is a special case)

Efficient folding/IVC with highly expressive gates

o high-degree gates + lookup + non-uniform computation
Easily extendable to support Customizable Constraint System (CCS) [STW23]
o Dominant IVC proving cost: (no dependence on gate degree and table size)

m 1MSM of size Iwl
m Recursive circuit: 3 G-exps
PROTOSTAR HyperNova SuperNova
Language Degree d Plonk/CCS | Degree d CCS R1CS (degree 2)
Non-uniform yes no yes
s |w| G |w| G
P native O(|wldlog?d)F | O(jw|dlog?d)F wlG
extra P native
wi looloup o) G o(T)F N/A
36 ___ - __ 16 _ _ _ G
P recursive (d+ O(1))H + Hin dlognH+Hi | o
' (d+0(1)F O(dlogn)F | Hin+ Ox(DH +1Hg Significantly fewer
eaeat F pecasive 1H O(log T) H N/A hashes/F-ops in the circuit
w/ lookup O(lklogT)F

General Recipe for Folding/Accumulation

General Recipe for Folding/Acc

Goal: Fold instances for NP Relation R

Step 1: Build a multi-round special-sound protocol I for relation R usually easy

Step 2: Transform I to a non-interactive argument NARK(I)

Innovation: generic & efficient transform

Step 3: Build a folding/acc scheme for the verifier check of NARK(I)

General Recipe for Folding/Acc

Step 1: Build a multi-round special-sound protocol I for relation R usually easy

Step 1.a: Transform M to CV[M] with a compressed verifier for relation R

Step 2: Transform I to a non-interactive argument NARK(I)

Innovation: generic & efficient transform

Step 3: Build a folding/acc scheme for the verifier check of NARK(I)

General Recipe for Folding/Acc

Step 1: Build a multi-round special-sound protocol I for relation R usually easy

Step 1.a: Transform M to CV[M] with a compressed verifier for relation R

Step 2: Transform CVI[I] to a non-interactive argument NARK(CV[T])

Innovation: generic & efficient transform

Step 3: Build a folding/acc scheme for the verifier check of NARK(CV[])

of G-ops independent of the degree of the verifier check!

Special-Sound Protocols: Example

Check: P knows a, b, ¢ s.t. a *b =c foralli € [n]

P

a, b, c

k-special-sound:
can extract valid witness from
k accepting transcripts

(k,s ..., k)-special-soundness
for multi-round protocols

v

R: # of prover moves =1
D: max degree of each check =2
L: # of verifier checks = n

Why easy to design?
No need for succinct communication/verifier
No need to be non-interactive

—>

check a * bi =c
foralli € [n]

1-special-sound!

Transform to Non-Interactive Argument of Knowledge

Protocol I':

Mg
——p L deg-D chks

comm-open

Protocol em[]:

Fiat-Shamir

Protocol NARK]IT]:

P v

x =[C=cm(m)]._, ; small
e

w=[m,..m.]

—_—
-gen|r, .., ry.k;
- chk cm-open;
- L deg-D chks

usually large

[AFK22]: Special-soundness of 1 = Knowledge-soundness of NARK][M]

Folding/Acc for NARK[I]'s verifier checks | fonere puotc bt

R: # of prover moves
d: max degree of each check
L: # of verifier checks

err-vec cm

err-vec
?
=€

Acc’s chk: f; (rﬁ', 17')

Goal: Fold ACC and w into a new ACC

Can generalize to fold two ACCs

commitments chals

X = {é =[Gy, T = [Ti]f:_ll}

T.W = {I_fl = [mi]il} prover msgs

NARK vfy chk: fq(m, ¥)=0"

terms in f all have deg d
for simplicity

For inhomogeneous f
add a slack variable u =1

Folding/Acc for NARK[M]'s verifier checks|treete teas

ACC.x = { ((_j/, 7) ; E} ACC.w = {n_ri’} Acc’s chk: 4 (rﬁ', 17') _z
X = { (é, f) } W = {rﬁ} NARK vfy chk: f;(rh, F); o”
cL T T T T Ty I const coeff: Acc’s checks

=1,d=2 :mv fi(X -+, X5+ 0)
— = 2
f2<m7r) = I

-\ 2 -2
= (X-?1+r'1> =1, + (...)X + £ X?
Acc chk NARK vfy chk

Folding/Acc for NARK[M]'s verifier checks|tseete ceces

ACC.x = { ((_j/, 7) ; E} ACC.w = {n_ri’} Acc’s chk: fa (rﬁ', 7) —g
X = { (é, f) } W = {rﬁ} NARK vfy chk: fq(i, F)=0"
e e const coeff: Acc’s checks

B d—1 . . RN R R - = -
€/ € FF],) st €4+) &% ::fd(X ‘m+m’, X-F+ r’): X9 coeff: NARK vfy checks

~ \d—1
E; < cm(e;)|.
P (Acc.m) = i - V(Acc.x,n.x)
a — F (d+1)-special-sound
O(dL) G-exps - O(d) G-exps
tO Commit EJ Acc_ €T <— Acc. T _|_ o -T.T tO fOld Ci and E
- >
d—1 .

Acc.w Acc.z. E + Acc.z. E + ajEj Expensive
Acc.w + a - m.w < — . for large d : (

Compressing Verification Checks for High-deg Gates

O(dL) G-ops |E; + cm(éj)]j:1 , where €, € L L: # of verifier checks

to commit Ej

Idea: Can we get a new SS protocol with single chk (i.e. L=1? >~
The folding can use identity commitment without any G-ops!
Example: ‘/;g;ls)($172132) =+ 22=0 :> ngs)(m,wg) L 5. ngs)(m,m) (21 +) + fa1zs ;O

?
ngs)(wl,fcz) =z1-22 =0

for random S

In general: Acc’s chk:

- o L . . o o\ ?
Vips (rﬁ’,;’);é’ c Ft > Vips (m’,r’,ﬁ) — Zﬁj V) (m’,r’):e cF

Compressing Verification Checks for High-deg Gates

Y
Idea: Can we make powers of [different vars/msgs sent by the prover? 3@~
\
v
P m, v P m, v
— —
r r
- -
mg Mg
> g o
R : R |
1
I .
The new verifier check | i=1.L:B:=4 | Mg,=[Bl, check B, =B * 3 :
- - = ? > I
‘/s,ps (mlarlaﬁ) Zﬁj sps<)—6 el : :
- Gate-deg = d+L : (The new verifier check homogenous deg = d+1 %\\\ﬂ\\

Vs’ps(*) ZB Vsps(m r)—eEIF

Caveat: Acc prover commits to O(L) terms

Compressing Verification Checks for High-deg Gates

The NARK check:

Caveat: Acc prover needs to commit to O(L) terms

Vi s 1) = 3 2V . F)
Fixed SS proto.

P m, Vv
—P
I’1
47

mR
_________________ o
: «—20
i =1.sqrt(L)
| .
| B= 4 Mg~ (BBl squw| check (B, B’}
| B’.: /B’L\/E
I i
|

=

Vslps(BJ7B,)

Acc Verifier:

Acc Prover:

Acc Chks:

Sol: add 1 sep comm for the err vec w/ len O(\/Z)

W)
deg = d+2 %
\/E \/f ’H-J\/_) -
BZ Vips (m r)
i=1 j=1
R+2 G-exps no overhead

w/ lookup!

to fold Ci and E

O (ﬂ) extra G-exps to
commitm,,,.

O(\/Z deg-2 checks
for correctness of [B;, B!]

Summary of the General Recipe

Can use [NguBonSet23]
for efficient IVC compilation

CV[Isps) FS[ecm[CV|ILsps]]] IVClacc[FS[ecm[CV [ILsps]]]]]
[BCLMS20]
Sec 3.5 ec 3.2 Sec 3.3 ec 3.4 Thm 1
Isps (Sec 3.1) cm|[CV [Tsps]] acc[FS[cm[C.V[Hsps]]]]

How to construct II__ for expressive constraint systems?

sps

Efficient Special-sound Protocols for
Expressive Relations

Permutation Check/High-deg Gates/Circuit Selection

e We obtain 1-move special-sound protocols for

o Permutation relation/High-degree gate-check relation
o Non-uniform circuit selection relation
o Customizable constraint system (CCS) [STW23]

® The schemes are trivial as the constraints are algebraic
o P sends witness, V checks the algebraic equations

A justification that

Step 1: Build a multi-round special-sound protocol I for relation R usually easy

What if the constraints are not algebraic?

Lookup [Hab22)

4 I T I
lookup), T table AT A S Lomy
vais Witizt & itz yais <:> Almilies - Z:X—F’Uﬁ e EX' i

= e

=11 : 1=1 :

Great Feature: i Special-sound protocol Iy x for Rik i
Prover messages are sparse! || Prover P(CLx,w € F) Verifier V(Cx) 5

i Compute m € F7 such that i

| ra |

! = Z Vi € [T) Wy ;

Efficient IVC prover w/ cheap r r<sF |
prv-msg comms computation? | Computeh e ¥, ge ¥ |
e !

| Th = Viell ' !

Challenges: K el |
: | . | r 1

Acc msg/err-vec are not sparse | | g = t_n:_’r\ﬁe 7] | hg, ;
: e I ¢ s T E

° ! h; = A |
Solution: ; ; ;g |
Update msg/err-vec comms : h; - (w; +7) = 1Vi € [{] ;
homomorphically i Extend to VGCtOI"-lOOkUpS gi - (t; +7) = m,Vi € [T] i

Putting the Pieces Together

N

Permchk II, Gatechk ITgaTg Lookup Il k Circ sel Ilggect CCS s
(Sec 4.1) (Sec 4.2) (Sec 4.3) (Sec 4.5) (Appdix B)

Special-sound protocols for ProtoStar/ProtoStar
Compositions of the building block SS protocols

Key Takeaway

e General recipe for efficient folding/accumulation schemes
e Simple Special-sound protocols for expressive relations
e ProtoStar IVC: 3 G-exps in the recursive circuit for supporting

o arbitrary high-deg gates
o arbitrarily large lookup tables
o arbitrarily many opcodes in the VM
PROTOSTAR HyperNova SuperNova
Language Degree d Plonk/CCS Degree d CCS R1CS (degree 2)
Non-uniform yes no yes
: |lw| G |lw| G
P native O(w|dlog2d)F | O(lw|dlog?d)F [wlG
extra P native
W/ lookup O(l£lk|)(G O(T)F N/A
3G _ G- __, -
P recursive I(d+ O(1))H + Hin dlognH + H;,
| o
U _@tOMF__ | _ O(dlogm_ | Mt OWHTHe
extra P recursive O(logT)H
w/ lookup IH O(lklogT)F N/A

Highly practical with
[NguBonSet23] IVC compiler

Significantly fewer hashes &
non-native F-ops in the circuit

Thanks!

https://eprint.iacr.org/2023/620.pdf

Non-uniform Circuit Selection

Special-sound protocol Ilggect for circuit selecting relation Rgelect

Prover P(b € F", pc € F) Verifier V

b, pc

?

b; - (pc —1) = OVi € [n]
b; - (b; — 1) = OVi € [n]

>t

Definition 14. For an integer n the relation Rseiect is the set of tuples (b,pc) € F™* x F
such that b; = OVi € [n] \ {pc} and if pc € [n] then by = 1.

Protocol I nces+ = (P(Cmces+, Piy W), V(Cmees+, Pi = (pe € [I],pi'))):

1. P sends V vector b = (0,...,0,by,. = 1,0,...,0) € FL.

2. V checks that b; - (1—b;) Z0andb;- (i —pc) Zoforallie [1], and 3 ;e bs 1.
3. P computes vector m € F” such that m; := > je L. 1(wj = t;)Vi € [T].
4. P sends V vectors w, m.

5.1V computes z = (1, pi, w) € F™ and checks that

1 q
b3 sk Oges,Mys 2= 0"
k=1 i=1

6. V samples and sends P random challenge r <$ IF.

7. P computes vectors h € Féx, g € FT such that

1 m;
hz=7v€€ 5 i = 1V€T
Wipeli] T7 P € o = t,+r iel]
8. V checks that Zfil h; = ZiTzl g; and
I d
> b [hz’ (W, + 7’)] =1 Vielbd,
g1

gi~(ti+r);m¢ VZE[T]

Folding/Acc for NARKI[I]'s verifier checks

R: # of prover moves
d: max degree of each check
L: # of verifier checks

err-vec cm

ACC.X = {*',P, u; E}

slack
ACC.w = {mv}

Acc’s chk:) u'.f; (m’, r’) —z

J=0

Goal: Fold ACC and w into a new ACC

Can generalize to fold two ACCs

ignore public input
for simplicity

commitments chals
nx=1{C= (01l =, u=1}

T.W = {ffl — [mi]il} prover msgs

d ?
NARK vfy chk: Y _ fi(,¥)=0"
7=0

terms in fjall have deg j

Folding/Acc for NARK[M]'s verifier checks|treete teas

d :

ACC.x = { (él, 3 u); E} ACCw = {m’} Acc’s chk: Z ul™ . f (m):

=0 '
X = {(é, 7, 1)} W = {rﬁ} NARK vfy chk: ny (m, ¥)=

e o e e e e e e e e M e e e M e e e e e

e d—j : const coeff: Acc’s checks
DN X+ fH(X oMt m, X F o+ :
: 2 (X+u) f](monn A r) . X9 coeff: NARK vfy checks

L=1d=2 (X +u)ifo+ (X+u)fi + f
fo=0 > ; i)
fl():?1 (X U) '0+(X+U)(X-I‘1+I'1)-|—(X r1—|—r1)
£):i‘% (ur1+r> L)X + (r1+r1)X2

T Acc’s chk NARK vfy chk

Folding/Acc for NARK][I]’s verifier checks

ACC.x = {(él, r, u); E} ACCw = {n_ri’} Acc’s chk: Zud i f; (rﬁ ;)

7=0

AX = {(é, 3 1)} W= {rﬁ} NARK vfy chk: Zf, (i, F)=

S [
[éj EFL]j_l s.t. €+ e; X7 5 Z(X+u)d ij(X-m—i—m’, X-r~|—r’) :
. : .

d: max degree of each check
L: # of verifier checks

?

2

const coeff: Acc’s checks
X? coeff: NARK vfy checks |

J . L . 3 . o L - - o
New Acc’s chk w/ folded msgs/errs!” ~ Y (a@+u)"7F; (a -m+m', a-T+ 1") =ée+ E €;o’

B + emi(e,)]"!

P (Acc,n) -

o — F (d+1)-special-sound
O(dL) G-ops -
to commit E, Acc.x — Acc.x +a - m.x
< >
Ace. w d—1

Acec. . E «— Acc.z. E + Z ajEj

Acc.w + a - m.w < — .

J=1

V(Acc.x,n.x)

O(d) G-ops
to fold Ci and E

Expensive
for large d : (

