
ProtoStar: Generic
Efficient IVC Schemes
Benedikt Bünz Binyi Chen

Espresso Systems

 Incrementally Verifiable Computation (IVC)

F F F

Goal: Prove correctness of (non-deterministic) iterative computation

……
……

Examples
● Verifiable delay functions:
● Succinct blockchain (e.g. Mina): zi = ledger state; wi = txs in block i
● zkVM, zkEVM: instruction set

 Incrementally Verifiable Computation (IVC)

IVC [Valiant08]: Prover PF and Verifier VF such that

PF PF PF

…
… VF

Knowledge soundness:
Can extract the witness (i.e. intermediate w and z) from the final output and the final IVC proof

Completeness:
Given accepted proof for input , can generate valid proof for

Generalization: Proof-Carrying Data (PCD)
Prove chain of computations -> prove tree/DAG of computations

 Why not directly using SNARKs?

IVC’s Advantages over SNARKs
● Small prover memory and preprocessing overhead (step func F is small)
● Enable proving dynamic number of calls to step function F
● Easier parallel proving (e.g., with PCD)
● and more……

Why IVC?
Succinct Non-interactive Arg-of-Knowledge (SNARKs) are also succinct

 IVC from SNARKs [Val08, BCCT13, BCTV14, COS20]

IVC.PF

SNARK.P

F

SNARK.V

Circuit

IVC.VF

SNARK.V

Caveats:
● expensive recursive verifier circuit
● expensive pairing-friendly cycles/trusted setup

Can we construct IVCs
w/o SNARKs?

 Split Accumulation/Folding [BCLMS20, KST21]

NP Relation R: (x , w) ∈ R

Small
Claim

Large
Witness

Acc/Folding: reduce the task of proving two
NP instances into proving a single instance

Acc.V

Acc.P

x1
x2

w1
w2

x

w

Acc.D

More efficient
than SNARK.V!

Completeness:
If x1,x2 satisfiable, then x
satisfiable

Knowledge Soundness:
If prover knows valid w,
then it also knows valid
w1,w2

IVC.PF

 IVC from Split Accumulation/Folding [BCLMS20, KST21]

Acc.V
xi

ACCi-1.x
ACCi.x

Acc.Pwi

ACCi-1.w
ACCi.w

F
Circuit

Acc.D

IVC.VF xi: claim that C(zi-1)=zi

ACCi.x: claim that Ci(z0)=zi

Acc.D may not be succinct:
Can use SNARK to delegate
the computation of Acc.D

smaller circuit
than SNARK.V!

 Limitations of State-of-the-Arts

Existing Acc/Folding schemes
● Use R1CS constraint systems

○ Less expressive per gate (e.g., no high-degree/lookup gate support)
○ Nova follow-ups (e.g. Sangria, Origami, etc) support Plonk/lookup

gates, but not efficient enough

● Do not support efficient circuit branching (except [KS22])
○ Can’t select step F (e.g. EVM opcode) at runtime without a circuit that

is linear in all possible Fs (e.g. the EVM opcode set)

Essential for
zkEVM
applications!

● Ad-hoc constructions with different proofs
○ No unified and general framework

Our Contributions
● General recipe for IVC/PCD schemes

○ Can fold any special-sound multi-round protocols efficiently (Nova is a special case)

● Efficient folding/IVC with highly expressive gates
○ high-degree gates + lookup + non-uniform computation

■ Easily extendable to support Customizable Constraint System (CCS) [STW23]
○ Dominant IVC proving cost: (no dependence on gate degree and table size)

■ 1 MSM of size |w|
■ Recursive circuit: 3 G-exps

Significantly fewer
hashes/F-ops in the circuit

General Recipe for Folding/Accumulation

General Recipe for Folding/Acc

Goal: Fold instances for NP Relation R

usually easy

Step 2: Transform Π to a non-interactive argument NARK(Π)

Step 3: Build a folding/acc scheme for the verifier check of NARK(Π)

Step 1: Build a multi-round special-sound protocol Π for relation R

Innovation: generic & efficient transform

General Recipe for Folding/Acc
Step 1: Build a multi-round special-sound protocol Π for relation R

Step 2: Transform Π to a non-interactive argument NARK(Π)

Step 3: Build a folding/acc scheme for the verifier check of NARK(Π)

usually easy

Innovation: generic & efficient transform

Step 1.a: Transform Π to CV[Π] with a compressed verifier for relation R

General Recipe for Folding/Acc
Step 1: Build a multi-round special-sound protocol Π for relation R

Step 2: Transform CV[Π] to a non-interactive argument NARK(CV[Π])

Step 3: Build a folding/acc scheme for the verifier check of NARK(CV[Π])

usually easy

Innovation: generic & efficient transform

Step 1.a: Transform Π to CV[Π] with a compressed verifier for relation R

of G-ops independent of the degree of the verifier check!

Special-Sound Protocols: Example

Check: P knows a, b, c s.t. ai * bi = ci for all i ∈ [n]

P V
a, b, c

check ai * bi = ci
for all i ∈ [n]

R: # of prover moves = 1
D: max degree of each check = 2
L: # of verifier checks = n

k-special-sound:
can extract valid witness from
k accepting transcripts

(k1, …, ku)-special-soundness
for multi-round protocols

1-special-sound!Why easy to design?
No need for succinct communication/verifier
No need to be non-interactive

Transform to Non-Interactive Argument of Knowledge

P Vm1

r1

……

mR

Protocol Π:

L deg-D chks

P VC1=cm(m1)

r1

……

CR=cm(mR)

Protocol cm[Π]:

- chk cm-open;
- L deg-D chks

comm-open

m1,...,mR

P V
x = [Ci=cm(mi)]i=1..R

Protocol NARK[Π]:

- gen [r1, …, rR-1];
- chk cm-open;
- L deg-D chks

w = [m1…mR]

small

usually large

Fiat-Shamir

[AFK22]: Special-soundness of Π ⇒ Knowledge-soundness of NARK[Π]

Folding/Acc for NARK[Π]’s verifier checks

err-vec cm chalscommitments

prover msgs

𝛑.x =

𝛑.w =

ignore public input
for simplicity

NARK vfy chk: Acc’s chk:

ACC.x =

ACC.w =

R: # of prover moves
d: max degree of each check
L: # of verifier checks

Goal: Fold ACC and 𝛑 into a new ACC
Can generalize to fold two ACCs

terms in fd all have deg d
for simplicity

For inhomogeneous fd:
add a slack variable u = 1

err-vec

Folding/Acc for NARK[Π]’s verifier checks

ACC.x = ACC.w =

𝛑.x = 𝛑.w = NARK vfy chk:

Acc’s chk:

const coeff: Acc’s checks
Xd coeff: NARK vfy checks

d: max degree of each check
L: # of verifier checks

Example:

NARK vfy chk Acc chk

Folding/Acc for NARK[Π]’s verifier checks

ACC.x = ACC.w =

𝛑.x = 𝛑.w = NARK vfy chk:

Acc’s chk:

d: max degree of each check
L: # of verifier checks

P(Acc,𝛑) V(Acc.x,𝛑.x)

O(d) G-exps
to fold Ci and E

O(dL) G-exps
to commit Ej

Expensive
for large d : (

New Acc’s chk w/ folded msgs/errs!

(d+1)-special-sound

const coeff: Acc’s checks
Xd coeff: NARK vfy checks

Compressing Verification Checks for High-deg Gates

O(dL) G-ops
to commit Ej

L: # of verifier checks

Idea: Can we get a new SS protocol with single chk (i.e. L = 1)?
The folding can use identity commitment without any G-ops!

Example:

In general: Acc’s chk:

Compressing Verification Checks for High-deg Gates
Idea: Can we make powers of different vars/msgs sent by the prover?

homogenous deg = d+1

mR+1= [Bi]i=1..Li = 1..L: Bi:= check Bi+1=Bi *

Caveat: Acc prover commits to O(L) terms

- Gate-deg = d+L : (The new verifier check:

P Vm1

r1

……
mR

The new verifier check:

P Vm1

r1

……
mR

Compressing Verification Checks for High-deg Gates

Fixed SS proto:

P Vm1

r1

……
mR

Caveat: Acc prover needs to commit to O(L) terms The NARK check:

mR+1= [Bi|B’i]i=1..sqrt(L) check {Bi, B’i}
i = 1..sqrt(L):
Bi:=
B’i=

Acc Chks: deg-2 checks
for correctness of

Sol: add 1 sep comm for the err vec w/ len

Acc Verifier:
R+2 G-exps
to fold Ci and E

 extra G-exps to
commit mR+1

Acc Prover:

no overhead
w/ lookup!

deg = d+2

Summary of the General Recipe
Can use [NguBonSet23]
for efficient IVC compilation

[BCLMS20]

How to construct for expressive constraint systems?

Efficient Special-sound Protocols for
Expressive Relations

Permutation Check/High-deg Gates/Circuit Selection

● We obtain 1-move special-sound protocols for
○ Permutation relation/High-degree gate-check relation
○ Non-uniform circuit selection relation
○ Customizable constraint system (CCS) [STW23]

● The schemes are trivial as the constraints are algebraic
○ P sends witness, V checks the algebraic equations

Step 1: Build a multi-round special-sound protocol Π for relation R usually easy

A justification that

What if the constraints are not algebraic?

Lookup
lookup

vals
table
vals

[Hab22]

Great Feature:
Prover messages are sparse!

Efficient IVC prover w/ cheap
prv-msg comms computation?

Challenges:
Acc msg/err-vec are not sparse

Solution:
Update msg/err-vec comms
homomorphically Extend to vector-lookups

Putting the Pieces Together

Special-sound protocols for ProtoStar/ProtoStarCCS:
Compositions of the building block SS protocols

Key Takeaway

● General recipe for efficient folding/accumulation schemes
● Simple Special-sound protocols for expressive relations
● ProtoStar IVC: 3 G-exps in the recursive circuit for supporting

○ arbitrary high-deg gates
○ arbitrarily large lookup tables
○ arbitrarily many opcodes in the VM

Significantly fewer hashes &
non-native F-ops in the circuit

Highly practical with
[NguBonSet23] IVC compiler

Thanks!
https://eprint.iacr.org/2023/620.pdf

Non-uniform Circuit Selection

Folding/Acc for NARK[Π]’s verifier checks

err-vec cm

slack

chalscommitments

prover msgs

𝛑.x =

𝛑.w =

ignore public input
for simplicity

NARK vfy chk: Acc’s chk:

ACC.x =

ACC.w =

R: # of prover moves
d: max degree of each check
L: # of verifier checks

Goal: Fold ACC and 𝛑 into a new ACC
Can generalize to fold two ACCs

terms in fj all have deg j

Folding/Acc for NARK[Π]’s verifier checks

ACC.x = ACC.w =

𝛑.x = 𝛑.w = NARK vfy chk:

Acc’s chk:

const coeff: Acc’s checks
Xd coeff: NARK vfy checks

d: max degree of each check
L: # of verifier checks

Example:

NARK vfy chk Acc’s chk

Folding/Acc for NARK[Π]’s verifier checks

ACC.x = ACC.w =

𝛑.x = 𝛑.w = NARK vfy chk:

Acc’s chk:

const coeff: Acc’s checks
Xd coeff: NARK vfy checks

d: max degree of each check
L: # of verifier checks

P(Acc,𝛑) V(Acc.x,𝛑.x)

O(d) G-ops
to fold Ci and E

O(dL) G-ops
to commit Ej

Expensive
for large d : (

New Acc’s chk w/ folded msgs/errs!

(d+1)-special-sound

