
VeriTAS
Verifying Image Provenance at Scale

Trisha Datta Binyi Chen Dan Boneh
Stanford University

1

• Verify Image Metadata

• Who

• When

• Where

Image Provenance Verification

2

 Why Important?

• Fight disinformation

• Copyright protection

• Regulation compliance

• Verify Image Metadata

• Who

• When

• Where

Image Provenance Verification

3

4

C2PA Standard (Simplified)

5

C2PA Standard (Simplified)

…

…
Manufacturer

Publisher
6

C2PA Standard (Simplified)

…

…
Manufacturer

Publisher
7

C2PA Standard (Simplified)

…

…
Manufacturer

Publisher
8

C2PA Standard (Simplified)

…

… Verify metadata
& signature

Manufacturer

Publisher
9

C2PA Standard

…

… Verify metadata
& signature

Another example: OpenAI
[https://help.openai.com/en/articles/8912793-c2pa-in-dall-e-3]

Manufacturer

Publisher
10

Challenge: Verifying Edited Images
Issue: Publishers process photos before publication

(e.g. cropping, blurring, etc.)

11

Publisher has no
signature for it

Challenge: Verifying Edited Images
Issue: Publishers process photos before publication

C2PA’s solution:

Publisher
C2PA-approved

Editing App

(e.g. cropping, blurring, etc.)

12

Challenge: Verifying Edited Images
Issue: Publishers process photos before publication

C2PA’s solution:

Publisher
C2PA-approved

Editing App
photo + orig sig + edits

(e.g. cropping, blurring, etc.)

13

Challenge: Verifying Edited Images
Issue: Publishers process photos before publication

C2PA’s solution:

Publisher
C2PA-approved

Editing App
photo + orig sig + edits

edited photo + sig

(e.g. cropping, blurring, etc.)

14

Challenge: Verifying Edited Images
Issue: Publishers process photos before publication

C2PA’s solution:

Publisher
C2PA-approved

Editing App
edited photo + sig

Issue: Must trust the editing application

(e.g. cropping, blurring, etc.)

15

Our Goals
Original photos properly signed

16

Our Goals
Original photos properly signed

Only permissible edits were made

17

Our Goals
Original photos properly signed

Only permissible edits were made

Same metadata as the original

18

Our Goals
Original photos properly signed

Only permissible edits were made

Same metadata as the original

Glass-to-glass security:
● No intermediate trust from camera to user screen

19

Our Results
A zkSNARK-based image provenance system

Verifying provenance of edited images

No intermediate trust

20

Our Results
A zkSNARK-based image provenance system

Verifying provenance of edited images

The 1st system that supports >90MB images

No intermediate trust

21

Scheme 1: Lightweight signing

Scheme 2: Faster proving

22

Evaluations & future directions

The provenance framework

Scheme 1: Lightweight signing

Scheme 2: Faster proving

23

Evaluations & future directions

The provenance framework

24

The Provenance Framework

25

The Provenance Framework

26

The Provenance Framework

location
timestamp

SNARK

27

The Provenance Framework

location
timestamp

SNARK

Verify metadata
& SNARK

28

The Provenance Framework

location
timestamp

SNARK

Verify metadata
& SNARK

SNARK: I know orig, sig s.t.
● sig is valid on hash(orig) w.r.t. vk
● Edited = Ops(orig)
● Edited.metadata = orig.metadata

29

The Provenance Framework

location
timestamp

SNARK

Verify metadata
& SNARK

SNARK: I know orig, sig s.t.
● sig is valid on hash(orig) w.r.t. vk
● Edited = Ops(orig)
● Edited.metadata = orig.metadata

Hash proving is hard
orig > 90MB

30

The Provenance Framework

location
timestamp

SNARK

Verify metadata
& SNARK

SNARK: I know orig, sig s.t.
● sig is valid on hash(orig) w.r.t. vk
● Edited = Ops(orig)
● Edited.metadata = orig.metadata

Hash proving is hard
orig > 90MB

PhotoProof (2016):
a few mins for 128 x 128 pixel image

31

Evaluations & future directions

The provenance framework

Scheme 1: Lightweight signing

Scheme 2: Faster proving

Hash Proving for Weak Signers

Scheme 1: Lightweight signing + ZK-friendly hash

Speed ZK-friendly Output length

SHA-256

Poseidon

Ajtai

32

Hash Proving for Weak Signers

Scheme 1: Lightweight signing + ZK-friendly hash

Speed ZK-friendly Output length

SHA-256

Poseidon / ?

Ajtai

33

Hash Proving for Weak Signers

Scheme 1: Lightweight signing + ZK-friendly hash

Speed ZK-friendly Output length

SHA-256

Poseidon / ?

Ajtai

34

Hash Proving for Weak Signers

Scheme 1: Lightweight signing + ZK-friendly hash

Speed ZK-friendly Output length

SHA-256

Poseidon / ?

Ajtai

Our choice: Compose Ajtai with Poseidon

35

Hash Proving for Weak Signers

30M
pixels

36

Hash Proving for Weak Signers

A

random matrix

*

30M
pixels

=

1KB

37

Hash Proving for Weak Signers

A *

30M
pixels

=

1KB

Poseidon

32B

38

random matrix

Hash Proving for Weak Signers

A *

30M
pixels

=

1KB

Poseidon

32B

Fast + ZK-friendly

39

random matrix

Hash Proving for Weak Signers

A *

30M
pixels

=

1KB

Poseidon

32B

Fast + ZK-friendly

40

random matrix

Hash Proving for Weak Signers

A * = b

1KB

41

random matrix

Freivald’s algorithm: Prove

committed
witness

Hash Proving for Weak Signers

rTA * = rTb

42

vector

Freivald’s algorithm: Sufficient to prove

for rand. vec. r

committed
witness

Hash Proving for Weak Signers

A * = b

1KB

43

random matrix

Ajtai binding commitment

Binding for low-norm input

Hash Proving for Weak Signers

A * = b

1KB

44

random matrix

Ajtai binding commitment

Binding for low-norm input

Challenge: Range-check image pixels

Hash Proving for Weak Signers

A *

30M
pixels

=

1KB

Poseidon

32B

Fast + ZK-friendly

Fast + ZK-friendly

Challenge: Range-check image pixels
45

random matrix

Range-check Pixels [BCGJM’18, GWC’19, GW’20]

Prove
2 0 2

46

Range-check Pixels [BCGJM’18, GWC’19, GW’20]

●

Prove
2 0 2

0 1 2 3

47

Range-check Pixels [BCGJM’18, GWC’19, GW’20]

●
●

Prove
2 0 2

0 1 2 3

0 0 1 2 2 2 3

48

Range-check Pixels [BCGJM’18, GWC’19, GW’20]

●
●

Prove
2 0 2

0 1 2 3

0 0 1 2 2 2 3

Check
● is a permutation of

●

49

Summary
A lightweight & ZK-friendly signing scheme

Fit for camera use cases

Limitation: Hash proving is still the bottleneck
10 mins vs 1 min

50

51

Evaluations & future directions

The provenance framework

Scheme 1: Lightweight signing

Scheme 2: Faster proving

Removing Hash Proving
Scheme 2: Move hashing out from the SNARK circuit

52

(5~10x proving speedup)

Removing Hash Proving
Scheme 2: Move hashing out from the SNARK circuit

Building block: Polynomial commitment scheme (PCS)

53

(5~10x proving speedup)

Removing Hash Proving
Scheme 2: Move hashing out from the SNARK circuit

Building block: Polynomial commitment scheme (PCS)

● Commit(pp, f(X), r) “short” Cf

● EvalOpen(pp, z, y; f, r) proof 𝜋
○ f(z) = y
○ Cf= Commit(pp, f(X), r)

54

(5~10x proving speedup)

Removing Hash Proving
Scheme 2: Move hashing out from the SNARK circuit

Building block: Polynomial commitment scheme (PCS)

● Commit(pp, f(X), r) “short” Cf

● EvalOpen(pp, z, y; f, r) proof 𝜋
○ f(z) = y
○ Cf= Commit(pp, f(X), r)

Serve as CRHF

55

(5~10x proving speedup)

Removing Hash Proving
Scheme 2: Move hashing out from the SNARK circuit

Building block: Polynomial commitment scheme (PCS)

● Commit(pp, f(X), r) “short” Cf

● EvalOpen(pp, z, y; f, r) proof 𝜋
○ f(z) = y
○ Cf= Commit(pp, f(X), r)

Serve as CRHF

Commit & open witness

56

(5~10x proving speedup)

A Commit-and-Prove Scheme

S P V

● Create photo orig
● h = PCS.Commit(orig)
● 𝜎 = Sign(sk, h)

57

A Commit-and-Prove Scheme

S P V

● Create photo orig
● h = PCS.Commit(orig)
● 𝜎 = Sign(sk, h)

58

orig, 𝜎, h

A Commit-and-Prove Scheme

S P V

● Edited = Ops(orig)
● (h, 𝜋) = SNARK.ProveOps(Edited; orig)

orig, 𝜎, h

59

A Commit-and-Prove Scheme

S P V

● Edited = Ops(orig)
● (h, 𝜋) = SNARK.ProveOps(Edited; orig)

○ h = PCS.Commit(orig)

orig, 𝜎, h

60

A Commit-and-Prove Scheme

S P V

● Edited = Ops(orig)
● (h, 𝜋) = SNARK.ProveOps(Edited; orig)

○ h = PCS.Commit(orig)

orig, 𝜎, h

61

Advantage: Prove the image editing function only

A Commit-and-Prove Scheme

S P V

● Edited = Ops(orig)
● (h, 𝜋) = SNARK.ProveOps(Edited; orig)

○ h = PCS.Commit(orig)

Edited, 𝜎, h, 𝜋
Ops

62

A Commit-and-Prove Scheme

S P V

● Retrieve vk
● Sig.Verify(vk, h, 𝜎) =? 1
● SNARK.VerifyOps(Edited, h, 𝜋) =? 1

Edited, 𝜎, h, 𝜋
Ops

63

Summary
A scheme with 5-10x faster proof generation

Fit for powerful signers (e.g. OpenAI)

Limitation: Signing is more heavyweight

64

65

Evaluations & future directions

The provenance framework

Scheme 1: Lightweight signing

Scheme 2: Faster proving

66

Photo editing proof:

Lattice hash proof:

Plain hashing:

● 0.93 ~ 4.41 mins / $0.13 on AWS

● 10.25 mins / $0.41 on AWS (>5x faster than Poseidon)
● ~0.7s (optimized) verification

Evaluation for 30MP Photos

Summary & Future Directions

67

A zkSNARK-based image provenance system
● Supports >90MB images
● Mode 1: Lightweight hashing + fast proof generation
● Mode 2: Further 5-10x proof generation acceleration

Summary & Future Directions

Future directions

68

A zkSNARK-based image provenance system
● Supports >90MB images
● Mode 1: Lightweight hashing + fast proof generation
● Mode 2: Further 5-10x proof generation acceleration

● Lightweight signing without hash proof
● Multi-hop photo editing
● Video transformation

69

