

VeriTAS Verifying Image Provenance at Scale

Trisha Datta **Binyi Chen** Dan Boneh Stanford University

Image Provenance Verification

Verify Image Metadata

- Who
- When
- Where

Image Provenance Verification

Verify Image Metadata

- Who
- When
- Where

Why Important?

- Fight disinformation
- Copyright protection
- Regulation compliance

These look like prizewinning photos. They're AI fakes.

Artificially generated images of real-world news events proliferate on stock image sites, blurring truth and fiction

November 23, 2023

By Will Oremus and Pranshu Verma

C2PA Standard

Leica camera has built-in defense against misleading AI, costs \$9,125

Issue: Publishers process photos before publication

(e.g. cropping, blurring, etc.)

Publisher has no signature for it

Issue: Publishers process photos before publication (e.g. cropping, blurring, etc.)

C2PA's solution:

Publisher

C2PA-approved Editing App sk

Issue: Publishers process photos before publication (e.g. cropping, blurring, etc.)

C2PA's solution:

photo + orig sig + edits

Publisher

Issue: Publishers process photos before publication (e.g. cropping, blurring, etc.)

C2PA's solution:

Issue: Publishers process photos before publication (e.g. cropping, blurring, etc.)

C2PA's solution:

Issue: Must trust the editing application

Original photos properly signed

Original photos properly signed

Only permissible edits were made

Original photos properly signed

Only permissible edits were made

Same metadata as the original

Original photos properly signed

Only permissible edits were made

Same metadata as the original

Glass-to-glass security:

• No intermediate trust from camera to user screen

Our Results

• A zkSNARK-based image provenance system

• Verifying provenance of edited images

No intermediate trust

Our Results

• A zkSNARK-based image provenance system

Verifying provenance of edited images

No intermediate trust

The 1st system that supports >90MB images

2 Scheme 1: Lightweight signing

The provenance framework

4 Évaluations & future directions

1

3 Scheme 2: Faster proving

2 Scheme 1: Lightweight signing

- **sig** is valid on hash(**orig**) w.r.t. **vk**
- Edited = Ops(orig)
- Edited.metadata = orig.metadata

4 Évaluations & future directions

3) Scheme 2: Faster proving

2 Scheme 1: Lightweight signing

Scheme 1: Lightweight signing + ZK-friendly hash

	Speed	ZK-friendly	Output length
SHA-256	\bigcirc	\bigotimes	
Poseidon			
Ajtai			

Scheme 1: Lightweight signing + ZK-friendly hash

	Speed	ZK-friendly	Output length
SHA-256	\bigcirc	\bigotimes	$\mathbf{\overline{\bigotimes}}$
Poseidon	<u>()</u>	?	\bigcirc
Ajtai			

Scheme 1: Lightweight signing + ZK-friendly hash

	Speed	ZK-friendly	Output length
SHA-256	\bigcirc	\bigotimes	$\mathbf{\overline{\bigotimes}}$
Poseidon	<u>()</u>		$\mathbf{\overline{\bigotimes}}$
Ajtai	\bigcirc	\bigotimes	\bigotimes

Scheme 1: Lightweight signing + ZK-friendly hash

	Speed	ZK-friendly	Output length
SHA-256	$\mathbf{\overline{\bigotimes}}$	\bigotimes	$\mathbf{\overline{\bigotimes}}$
Poseidon	\otimes / \otimes	?	$\mathbf{\overline{\bigotimes}}$
Ajtai	\bigcirc		\bigotimes

Our choice: Compose Ajtai with Poseidon

30M pixels

Fast + ZK-friendly

Freivald's algorithm: Prove

Freivald's algorithm: Sufficient to prove

Ajtai binding commitment

Binding for low-norm input

Ajtai binding commitment

Binding for low-norm input

Challenge: Range-check image pixels

Fast + ZK-friendly

Challenge: Range-check image pixels

Prove $\vec{x} \in \{0, 1, \dots, n-1\}^m$

$$ec{x}$$
 2 0 2 $n=4$

Prove
$$\vec{x} \in \{0, 1, \dots, n-1\}^m$$

•
$$\vec{y} := [0, 1, \dots, n-1]$$

$$ec{x}$$
 2 0 2 $n=4$
 $ec{y}$ 0 1 2 3

Prove
$$\vec{x} \in \{0, 1, \dots, n-1\}^m$$

- $\vec{y} := [0, 1, \dots, n-1]$
- $\vec{z} := \operatorname{sort}(\vec{x} || \vec{y})$

$$\vec{x}$$
 2 0 2 $n=4$
 \vec{y} 0 1 2 3
 \vec{z} 0 0 1 2 2 2 3

Prove
$$\vec{x} \in \{0, 1, \dots, n-1\}^m$$

- $\vec{y} := [0, 1, \dots, n-1]$
- $\vec{z} := \operatorname{sort}(\vec{x} || \vec{y})$

$$\vec{x}$$
 2 0 2 $n=4$
 \vec{y} 0 1 2 3
 \vec{z} 0 0 1 2 2 2 3

Check

- \vec{z} is a permutation of $(\vec{x}||\vec{y})$
- $\vec{z}[i+1] \vec{z}[i] \in \{0,1\}$

Summary

A lightweight & ZK-friendly signing scheme

Fit for camera use cases

Limitation: Hash proving is still the bottleneck 10 mins vs 1 min

4 Évaluations & future directions

3 Scheme 2: Faster proving

2 Scheme 1: Lightweight signing

Scheme 2: Move hashing out from the SNARK circuit (5~10x proving speedup)

Scheme 2: Move hashing out from the SNARK circuit (5~10x proving speedup)

Building block: Polynomial commitment scheme (PCS)

Scheme 2: Move hashing out from the SNARK circuit (5~10x proving speedup)

Building block: Polynomial commitment scheme (PCS)

- Commit(pp, f(X), r) → "short" C_f
- EvalOpen(pp, z, y; f, r) $\longrightarrow \text{proof } \pi$

• f(z) = y• $C_f = Commit(pp, f(X), r)$

Scheme 2: Move hashing out from the SNARK circuit (5~10x proving speedup)

Building block: Polynomial commitment scheme (PCS)

- Commit(pp, f(X), r) \longrightarrow "short" C_f
- EvalOpen(pp, z, y; f, r) $\longrightarrow \text{proof } \pi$

• f(z) = y• $C_f = Commit(pp, f(X), r)$ Serve as CRHF

Scheme 2: Move hashing out from the SNARK circuit (5~10x proving speedup)

Building block: Polynomial commitment scheme (PCS)

- Commit(pp, f(X), r) \longrightarrow "short" C_f
- EvalOpen(pp, z, y; f, r) $\longrightarrow \text{proof } \pi$
 - f(z) = y
 C_f = Commit(pp, f(X), r)

Commit & open witness

Advantage: Prove the image editing function only

Summary

• A scheme with 5-10x faster proof generation

Fit for powerful signers (e.g. OpenAI)

Limitation: Signing is more heavyweight

2 Scheme 1: Lightweight signing

Evaluation for 30MP Photos

Photo editing proof:

• 0.93 ~ 4.41 mins / \$0.13 on AWS

Lattice hash proof:

- 10.25 mins / \$0.41 on AWS (>5x faster than Poseidon)
- ~0.7s (optimized) verification

Hashing Scheme	Time (s)	Memory (GB)
SHA256	1.71	0.003
Lattice (64 bit)	4.24	0.003
FRI-PCS	19.84	18.90

Summary & Future Directions

A zkSNARK-based image provenance system

- Supports >90MB images
- Mode 1: Lightweight hashing + fast proof generation
- Mode 2: Further 5-10x proof generation acceleration

Summary & Future Directions

A zkSNARK-based image provenance system

- Supports >90MB images
- Mode 1: Lightweight hashing + fast proof generation
- Mode 2: Further 5-10x proof generation acceleration
- Future directions
 - Lightweight signing without hash proof
 - Multi-hop photo editing
 - Video transformation

