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Image Provenance Verification
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 Why Important?

• Fight disinformation

•  Copyright protection

• Regulation compliance

• Verify Image Metadata 

• Who 

• When 

• Where

Image Provenance Verification
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C2PA Standard (Simplified)
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… Verify metadata 
& signature

Manufacturer

Publisher
9



C2PA Standard

…

… Verify metadata 
& signature

Another example: OpenAI
[https://help.openai.com/en/articles/8912793-c2pa-in-dall-e-3]

Manufacturer

Publisher
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Challenge: Verifying Edited Images
Issue: Publishers process photos before publication

(e.g. cropping, blurring, etc.)
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Issue: Publishers process photos before publication
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Challenge: Verifying Edited Images
Issue: Publishers process photos before publication

C2PA’s solution:

Publisher
C2PA-approved

Editing App
photo + orig sig + edits

edited photo + sig

(e.g. cropping, blurring, etc.)
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Challenge: Verifying Edited Images
Issue: Publishers process photos before publication

C2PA’s solution:

Publisher
C2PA-approved

Editing App
edited photo + sig

Issue: Must trust the editing application

(e.g. cropping, blurring, etc.)
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Our Goals
Original photos properly signed
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Our Goals
Original photos properly signed
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Same metadata as the original
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Our Goals
Original photos properly signed

Only permissible edits were made

Same metadata as the original

Glass-to-glass security: 
● No intermediate trust from camera to user screen
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Our Results
A zkSNARK-based image provenance system

Verifying provenance of edited images

No intermediate trust
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Our Results
A zkSNARK-based image provenance system

Verifying provenance of edited images

The 1st system that supports >90MB images 

No intermediate trust
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Scheme 1: Lightweight signing

Scheme 2: Faster proving
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The provenance framework
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Scheme 2: Faster proving
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The Provenance Framework

location
timestamp

SNARK
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The Provenance Framework

location
timestamp

SNARK

Verify metadata 
& SNARK

SNARK: I know orig, sig s.t.
● sig is valid on hash(orig) w.r.t. vk
● Edited = Ops(orig)
● Edited.metadata = orig.metadata
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timestamp
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The Provenance Framework

location
timestamp

SNARK

Verify metadata 
& SNARK

SNARK: I know orig, sig s.t.
● sig is valid on hash(orig) w.r.t. vk
● Edited = Ops(orig)
● Edited.metadata = orig.metadata

Hash proving is hard
orig > 90MB

PhotoProof (2016):
a few mins for 128 x 128 pixel image
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Evaluations & future directions

The provenance framework

Scheme 1: Lightweight signing

Scheme 2: Faster proving



Hash Proving for Weak Signers

Scheme 1: Lightweight signing + ZK-friendly hash

Speed ZK-friendly Output length

SHA-256

Poseidon             

Ajtai
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Hash Proving for Weak Signers

Scheme 1: Lightweight signing + ZK-friendly hash

Speed ZK-friendly Output length

SHA-256

Poseidon             /                 ?

Ajtai

Our choice: Compose Ajtai with Poseidon
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Hash Proving for Weak Signers

30M 
pixels
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Hash Proving for Weak Signers

A

random matrix
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30M 
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Hash Proving for Weak Signers

A *

30M 
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32B
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Hash Proving for Weak Signers

A * = b

1KB 

41

random matrix

Freivald’s algorithm: Prove

committed 
witness



Hash Proving for Weak Signers

rTA * = rTb

42

vector

Freivald’s algorithm: Sufficient to prove

for rand. vec. r

committed 
witness



Hash Proving for Weak Signers

A * = b

1KB 
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random matrix

Ajtai binding commitment

Binding for low-norm input



Hash Proving for Weak Signers

A * = b

1KB 
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Ajtai binding commitment

Binding for low-norm input

Challenge: Range-check image pixels



Hash Proving for Weak Signers

A *

30M 
pixels

=

1KB 

Poseidon

32B

Fast + ZK-friendly

Fast + ZK-friendly

Challenge: Range-check image pixels
45
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Range-check Pixels [BCGJM’18, GWC’19, GW’20]

Prove
2 0 2
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Range-check Pixels [BCGJM’18, GWC’19, GW’20]

●

Prove
2 0 2

0 1 2 3
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Range-check Pixels [BCGJM’18, GWC’19, GW’20]

●
●

Prove
2 0 2

0 1 2 3

0 0 1 2 2 2 3
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Range-check Pixels [BCGJM’18, GWC’19, GW’20]

●
●

Prove
2 0 2

0 1 2 3

0 0 1 2 2 2 3

Check
●    is a permutation of
 

●
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Summary
A lightweight & ZK-friendly signing scheme

Fit for camera use cases

Limitation: Hash proving is still the bottleneck
10 mins vs 1 min
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Evaluations & future directions

The provenance framework

Scheme 1: Lightweight signing

Scheme 2: Faster proving



Removing Hash Proving
Scheme 2: Move hashing out from the SNARK circuit
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Removing Hash Proving
Scheme 2: Move hashing out from the SNARK circuit

Building block: Polynomial commitment scheme (PCS)

● Commit(pp, f(X), r)  “short” Cf

● EvalOpen(pp, z, y; f, r)      proof 𝜋 
○ f(z) = y
○ Cf= Commit(pp, f(X), r)
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Removing Hash Proving
Scheme 2: Move hashing out from the SNARK circuit

Building block: Polynomial commitment scheme (PCS)

● Commit(pp, f(X), r)  “short” Cf

● EvalOpen(pp, z, y; f, r)      proof 𝜋 
○ f(z) = y
○ Cf= Commit(pp, f(X), r)

Serve as CRHF

Commit & open witness
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(5~10x proving speedup)



A Commit-and-Prove Scheme

S P V

● Create photo orig
● h = PCS.Commit(orig)
● 𝜎 = Sign(sk, h)
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● Create photo orig
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● 𝜎 = Sign(sk, h)

58

orig, 𝜎, h



A Commit-and-Prove Scheme

S P V

● Edited = Ops(orig)
● (h, 𝜋) = SNARK.ProveOps(Edited; orig)

orig, 𝜎, h
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A Commit-and-Prove Scheme

S P V

● Edited = Ops(orig)
● (h, 𝜋) = SNARK.ProveOps(Edited; orig)

○ h = PCS.Commit(orig)

orig, 𝜎, h
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A Commit-and-Prove Scheme

S P V

● Edited = Ops(orig)
● (h, 𝜋) = SNARK.ProveOps(Edited; orig)

○ h = PCS.Commit(orig)

orig, 𝜎, h
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Advantage: Prove the image editing function only



A Commit-and-Prove Scheme

S P V

● Edited = Ops(orig)
● (h, 𝜋) = SNARK.ProveOps(Edited; orig)

○ h = PCS.Commit(orig)

Edited, 𝜎, h, 𝜋 
Ops
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A Commit-and-Prove Scheme

S P V

● Retrieve vk
● Sig.Verify(vk, h, 𝜎) =? 1
● SNARK.VerifyOps(Edited, h, 𝜋) =? 1

Edited, 𝜎, h, 𝜋 
Ops
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Summary
A scheme with 5-10x faster proof generation

Fit for powerful signers (e.g. OpenAI)

Limitation: Signing is more heavyweight
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Evaluations & future directions

The provenance framework

Scheme 1: Lightweight signing

Scheme 2: Faster proving
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Photo editing proof: 

Lattice hash proof: 

Plain hashing: 

● 0.93 ~ 4.41 mins / $0.13 on AWS

● 10.25 mins / $0.41 on AWS (>5x faster than Poseidon)
● ~0.7s (optimized) verification

Evaluation for 30MP Photos



Summary & Future Directions
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A zkSNARK-based image provenance system
● Supports >90MB images
● Mode 1: Lightweight hashing + fast proof generation
● Mode 2: Further 5-10x proof generation acceleration



Summary & Future Directions

Future directions
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A zkSNARK-based image provenance system
● Supports >90MB images
● Mode 1: Lightweight hashing + fast proof generation
● Mode 2: Further 5-10x proof generation acceleration

● Lightweight signing without hash proof
● Multi-hop photo editing 
● Video transformation
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