Hyperplonk:
prover and h

Plonk with linear-time

igh degree gates

Binyi Chen Benedikt Biinz Dan Boneh Zhenfei Zhang

Espresso Systems Espresso, Stanford, NYU Stanford Espresso Systems

0

Preprocessing (zk)-SNARKSs

SNARK = A succinct proof showing that 3w s.t. C(x,w) =0
A
[\
smallsize fast to verify

Why so popular recently? Outsourcing computation

. n W

- R o
bl b

A\ EE= < g

Computation happens locally Computation goes remote/global

S

Application: Blockchain

SNARK = A succinct proof showing that 3w s.t. C(x w) =0

P

“ Blockchain

i network

~~~~~

More applications: zkRollup, zkEVM, zkBridge, DSNs, zkML

S



Preprocessing (zk)-SNARKSs

Call for:

* Fast prover for large statements (e.g., as fast as computation)

* Small proof size and efficient verification

* Powerful circuit constraint systems (e.g., high-deg/lookup gates)
* Hardware-friendliness

)



Our Contributions

e HyperPlonk+ PolylOP

* Linear-time prover, no use of FFT-friendly field
* The first linear-time SNARK that has expressive gate support and small proof size
* Hardware-optimization friendly

* Native high-degree custom gate support
* Better support than Plonk [GWC19]

* Lookup gate support
* The first linear-time PolylOP for the lookup relation!

 Towards strict linear-time SNARKs: Orion+ PCS

* Improve opening size of the state-of-the-arts (Orion & Brakedown)
* 5MB proof -><10KB proof

 Active industry deployment/development
* E.g., ETH Foundation/Scroll actively develop it for future zkEVM solutions

)



General paradigm for modern SNARKs

Many SNARKs are built in two steps:

polynomial

interactive
oracle proofs

(poly-IOP)

polynomial
commitment
scheme

PLONK,
Sonic,
Marlin,
Libra,

KZG,
[PA-based,
FRI-based,
DARK,

\_> (zk)SNARK for general circuits

S



Polynomial | O P acsis,crmmvwas sesis)

Verifier V(S,, X)

Oracle (=d)
€ F X
Prover P(Sp,x, W) 1 D X1
<d
Oracle fl = IFI(9 : [X]
Ty
<d
Oracle fz € IFI(9 : [X]
r;
(P
<d
Oracle fe € IFI(? : [X]

Can extend to
multivariate

ri e Iy polynomial setting
r, o F can query f;
P atany x in IF,,

)
Verify o/t ft(ry, ..,re_1)

oTt—1



Polynomial Commitment izeo
Committing phase I l l pp < Setup(d)
pp, f€ FSV[X], 7 @

commit(pp, f, ) = “short” comy

Prover Verifier

Binding: cannot output two valid openings (f; 1), (f; 12) for com.

Optional: commitment comy is hiding

)



Polynomial Commitment

Evaluation phase | Goal: “convince” Vthat f(z) = y and comy =commit(pp, f, )

x = (pp,comy,z,y), w = (f,1) x = (pp, comy, z,y)

proof

Accept/Reject

Prover Verifier

Evalis knowledge sound:
* Vaccepts = P “knows” f & IF;Sd) [X],7s.t. f(z) =y and com; =commit(pp, f,

Optir))\alz Eval is zero knowledge: ™ “reveals nothing” about f.

)



Outline

* A generic framework for proving circuit relations
* High-degree gates support
* Hyperplonk+: support lookup on the Boolean hypercube

* Evaluations

)



Outline

* A generic framework for proving circuit relations

)



Workflow [GWC19]

Compile a circuit to a trace

v

Encode the trace as polynomials

v

Prove that the trace encodes a valid circuit computation

/\

Gate identity check Wiring identity check

)



PLONK’s Circuit Encoding

84

(Gate 3)
77

(Gate 2) @ 7
11 7

(Gate 0)

5 6

S & @

1 «—

E—

— example input

The computation trace:

inputs: 5 6, 1
Claimed output: 84
Gate O: 5, 6, 11
Gate 1: 6, 1, 7
Gate 2: 11, 7, 77
Gate 3: 77, 7, | 84
left right
inputs | | inputs | | outputs
>



Trace to Polynomial

The computation trace:

TR CTTRETEN  Options of H:

6 1 7 7
11 7 77 84
The polynomials:
L(H) = 5 6 11 77
R(H) = 6 1 7 7
O(H) = 11 7 77 84

* H={1,w w? w}
* L, R, Oare univariate polys
* Interpolating L, R, O needs FFT

- H=1{00,01,10,11}
* L, R, Oare multilinear polys
e Polys arein eval form, no
interpolation
* Free embedding!

)



Gate Check [ewcis ¥

(Gate 3)
: 77
The polynomials:

L(H) = 5 6 11 77 11/ 7

R(H) = 6 1 7 7 (Gate 0) (Gate 1)
OH)= 11 7 77 84 > }6 /6 'é
S(H) = 1 1 0 1 @

Idea: encode gate types using a selector polynomial S(X)
v£=0,..]|C|—1:

S(Hy) =1 if gate#l isan addition gate
S(Hy) =0 if gate #l isa multiplication gate

)



Gate Check [ewcis ¥

(Gate 3)
: 77
The polynomials:

L(H) = 5 6 11 77 11/ 7

R(H) = 6 1 7 7 (Gate 0) (Gate 1)
OH)= 11 7 77 84 > }6 /6 'é
S(H) = 1 1 0 1 @

The zero-check: V y € H:

SO - [LG) +RMI+ (1 =SW) - [LB) - RW] = 0(y)
Addition gate Multiplication gate

1-[L+RWMI+(A-1)- =0@) 0- +(1-0)-[LY)-RY)]=0(y) s



84

Gate Check [ewcis -

The polynomials: 7

L(H) = 5 6 11 77 11/ 7

R(H) = 6 1 7 7 (Gate 0) (Gate 1)
OH)= 11 7 77 84 > }6 /6 'é
S(H) = 1 1 0 1 @

ZeroCheck SumCheck
» f(y) =0vy€eH » Yyeuf ) eq . (y) =0

Intuition: rand linear combine

Univariate Sumcheck: requires FFTs

Multivariate Sumcheck: linear prover time!

)



Wiring Identity Check

84

(Gate 3)
77
(Gate 2) @ 7
11 7
(Gate 0) é(Gate 1)
5 6 /6‘ 1
@)

The computation trace:

L R (o)
inputs: 5, 6, 1
Gate O: 5, 6, |11
Gate 1: 6, |1, |7
Gate 2: 11} | 7,| | 77
Gate 3: 77, | 7, 84

All slots with the same color
should have identical values!

(L,R,0)
n(L,;?, 0)

for some fixed permutation

S



Permutation Check
Prove (L,R,0) = (L, R, 0) for some fixed permutation 7

Approach 1: Permutation check: f(x) = f(n(x))‘v’x €EH Approach 2:
4 ’ »
Multi-set check Zero check
{(fi,D}ien =i 1) }ien f(x) - f(®(x))vx € H
| Need |F| > |H| 7T = mle(m)
Product check: [[,ey f(x) = s degree blowup
Zero check 2log|H|-round sum check
f(x)=0vVx€EH Naive prover: quadratic runtime
Our result: quasilinear proving time
Advantage: Linear prover time Advantage: soundness err = (log|H|)?/|F]
Tradeoff: Not super fit for “small” fields Tradeoff: quasilinear prover

S



Hyperplonk: Components

Recipe for linear prover & avoid FFTs

Hyperplonk | Hyperplonk-+ H: Booloea n hypercube |
/ \ f: multivariate polynomials
Permutation check Lookup
Gate Check
Clx,w) =0 f(x) = f(r(x))vx € H f(H) € T(H)
X — o )o_ ]

E Multi-set check E

\\)i\ {(xl,i) xz,i)}iEH = {(3’1,i' yz,i)}ieH i

| Product check: [y f(x) =s i

_______________________________________________________________

Zero check
f(x)=0VxeH

)

Sumcheck: Y ey f(X) =5




The last mile to success: batching

Preprocessor S(C) oracle

S(x), (%)

Prover P(S,,X, W)

oracle

can be a single commitment

L(x),R(x), 0(X)

PolylOP for gate check

The underlying Sumchecks

can be batched

PolylOP for wiring check

PolylOP for batch evaluate

A single PCS eval proof

in the SNARK

Verifier V(S,, X)

BatchEval PolylOP

* Prover time O (k2*) (optimal)
» ku-factorimprovement

* O(u) communication

e 0(kpu) verification time

many PCS eval proofs

14+ poly eval queries?

A single evaluation query
on a multilinear polynomial



* High-degree gates support

Outline

)



Hyperplonk: High-degree Gates

SO - [LY) + RO+ (1 =SO) - [LO) - RW)] = 0(¥) VY € Hyqres

v

The gate formula can be more general
e.g. more selectors and more different custom gates

/ high degree, e.g., L(y)° + R(y)

SO - [LG) + RO+ (1 =SO)) - [6(LY), RW))] = 0(¥) VY € Hyates

Benefit: reduce the size of the circuit/witness -> faster prover

E.g.: ECC addition, Rescue hash, etc...

)




Hyperplonk: High-degree Gates

Plonk: more expensive quotient check

* Quotient polynomial g(X) has degree 0 (dn)
« Commit g(X) ->increase group operations
* Higher degree poly-mul -> larger-sized FFTs
* In practice, deg < 8

Quotient Check
fX) = Zeroy(X) - q(X)

V.S.

Hyperplonk: efficient multivariate sumcheck
« Only O(dn) field-operations
e Allows much higher degree

Sumcheck
Yyep, f(¥) - eq () =0

)



Efficient Sumcheck for High-degree Polynomials

Goal: “convince” V that ZxEBﬂ fX)=s

Prover 1 (X) = Ypep £ (B, X) Verifier

v

check 7,(0) +7,(1) = s

A

r(X) = ZbEBi_lf(b, X, 41, ""“u)

check 1;(0) + r;(1) = r; 1 (@ 41)

A

v

check f(al,... ,aﬂ) =n(a)

Optimizations to the classic Sumcheck [LFKN92] No proof size/verifier
* Sending 7; as univariate oracles (d field elems -> 1 group elem) «—— dependence on d anymore
* Decrease the number of queries per round: 3 queries ->1 query
* More efficient algorithm for computing Sumcheck for high-degree polynomials <
« 0(2%d?) - 0(2*dlog?d) (and 0(2*dlogd) for certain custom gates) >
* In practice, replace FFTs with Karatsuba



timen (ms)

Evaluations: High-degree Gates

6X106 q;w +‘qw + q“ﬂ -1l + c‘.I =0 - ‘
e | * Degree 32 is only
5x108F = = 1 30% more expensive
| than degree 2
5x10° | ‘ -
.5x10° |
4x106*

.5x10°%

6 | | | I |
3x10° 4 5 10 15 20 25 30
degree d

)



Outline

* Hyperplonk+: support lookup on the Boolean hypercube

)



Lookup Gates

Expensive to express
Range check: with arithmetic gates

11€{0,1,..,216} 0

(Gate i)
5 \6
Bit operation:

3=011

(Gate i)
5=101 \6=110

2161

x € [0..216)

,

1 lookup gate suffices!

(0,000 (x,y,2) € {0,1}*x{0,1}°x{0,1}®

_

(563)

(15,8,7)

precomputed

Why so useful:

Efficient random memory accessing
Reuse precomputed correlated tuples

S



The Idea of Plookup (ew2q

Lookup relation:f c T for some preprocessed table T and some witness vector f

Lookup relation
1 1

~1 11 1/ 1
w 1 C 2 “ 3 3 1V 2
H — | . .
b2 3 3 2 2 — a2y Multiset Elquacl)lty Check
'\ Poly-IOP
-l B s V
1 2 3 /' 3
* It’seasyto shift on H for univariate 5 / 3 2 /'\.‘4
polynomials: f(H) - f(wH) X /,
* How todo it in the Boolean hypercube = 4/ 1
/ S

for multilinear polynomials? 4’ "1



Shift in the Boolean Hypercube

Step 1: Shift on the Boolean hypercube from a multiplication in GF (2#)

Let p, (X) € F;[X] be a primitive polynomial
F,[X]/(p,) = GF(2"#) and X isa generator!
Eg.p,(X) =X*+X+1

b3 X + b, X* + b X + b, multiply X

u = (bs,by,by,by) € Fys \ {0}

Caveats
* by @ b; = by + by — 2byb3 is quadratic
* Individual deg of f(next(X)) = 2
» Naive MSET check on f(next(X))
« O(n?) sumcheck prover

Cool connection w/ short PCP

[Ben-Sasson, Sudan 05]

bsX*+ b, X3 + by X% + by X
= b2X3 + b1X2 + (b0®b3)X + b3

next(u) = (b,,b{,by @D b3, b3) € F,4 \ {0}

0001 0010 0100 1000 0011 I 0110
1110 0111 1010 0101 1011 1100
1111 1101 1001 )‘




Shift in the Boolean Hypercube

Step 2: Simulate f(next(X)) on the Boolean hypercube using the multilinear f(X)!

u = (b3, by, by, by) € Fpa \ {0} ™Y pext(u) = (by,by,by @ bs,by) € Fpa \ {0}

Idea: enumerate b; and linearize next()!

Define
folX3, ., Xo) = X5 - f(X3,X1,1 = X0,1) + (1 — X3) - f(X2,X1,X0,0)

Property 1: f7,(X) = f(next(X)) on the Boolean hypercube!

Caseb; = 1:
f‘o(bg,...,bo)::1'f(b2,b1,1_b0,1) +(1_1) :f(bz,bl,bo@bs,bg)
= f(next(bs, ..., by)
Case b; = 0: f( s ° )
fb(b3;---)b0) =0 - + (1 _ O) ) f(bZJbl)bO)O) = f(bz,bl,bo @ b3 )

= f(next(b3, .y by



Shift in the Boolean Hypercube

Step 2: Simulate f(next(X)) on the Boolean hypercube using the multilinear f(X)!

u = (b3, by, by, by) € Fpa \ {0} ™Y pext(u) = (by,by,by @ bs,by) € Fpa \ {0}

. Idea: enumerate b, and linearize next()!
Define 3 ()

--------------------------------------------------------------------

-------------------------------------------------------------------

Property 2: Can simulate eval of f;, from 2 evals of f

¥

h No need to build/check
T (next(X)), h(next(X))

The lookup PolylOP can run sumcheck given oracles T,

\ 4

)

lookup PIOP with linear prover time!



* Evaluations

Outline

)



Evaluations

210 211 213 215 216 217 218 219 220

HP (Vanilla Gate) 0.07 0.1 0.2 0.5 08 14 25 5.1 9.6
HP (Jellyfish Gate) 0.1 0.13 0.18 0.27 0.67 1.2 2 3.7 7.3 13.5
Jellyfish Plonk 007 0.1 0.15 025 046 078 14 27 55 10.8 22
Ark-Spartan 0.51 0.72 14 3.1 4.7 83 137 27 44

Table 6: 64-thread prover’s performance (in seconds) for varying number of constraints under
different schemes.

Proof size (u=20)(with KZG PCS)

Plonk ~1kb
HP 4.7kb

e Spartan 40kb

Implementation
« Jellyfish: highly optimized

HP: many possible improvements

HP outperforms Plonk at 21%; at
220 HP is 60% faster then Plonk
Fewer constraints needed than

Application | Rrics | Ark-Spartan || Rpronk+ | Jellyfish | HyperPlonk | e Prover time
3-to-1 Rescue Hash 288 [1] 422 ms 144 [71] 40 ms 88 ms
PoK of Exponent 3315 [63] 902 ms 783 [63] 64 ms 105 ms
ZCash circuit 217 [55] 8.3s 215 [42] 0.8 s 0.6 s
Zexe’s recursive circuit || 222 [81] 6 min 217 [81] 13.1s 5.1s
Rollup of 50 private tx 2% 39 min® 220 [71] 110 s 38.2 s
zkEVM circuit® N/A N/A 227 1 hour®® | 25 min®¢

Spartan for the same application

S



Cost Breakdown

Bottleneck
PCS commitments and batch openings

Potential optimizations
* many eval points and polys are identical
e Batching all zero-checks

Further improvements on hardware
B i * Multi-exps and sumchecks are highly
parallelizable and hardware-friendly

% Circuit Check

% Commit witness

% Rest . 01.6% Rest

S



Summary & Open problems

* HyperPlonk+ PolylOP
* Linear-time prover, no use of FFT-friendly field
* Native high-degree custom gate support

* Lookup gate support with linear-time prover
* Concretely efficient

* Open problems

* Degree k > 1 shifts?
« Our technique: needs 2¥ evalson f to simulate an eval on f;,
* Linear-time permutation argument for fields with small characteristics

)



Thank youl!

https://eprint.iacr.org /2022 /1355.pdf



Permutation Check
Prove (L,R,0) = (L, R, 0) for some fixed permutation 7

Approach 1: Permutation check

f(x) = f(n(x))vx € H

==

Multi-set check

{(fi, D}ien = {(fi,m) }ien \H1/IF|
soundness err
Advantage:
* Linear prover time
Tradeoff:

* Not super fit for “small” fields

| Product check: [[, ¢y f(x) =s

Zero check
fx)=0vx€H

S



Permutation Check
Prove (L,R,0) = (L, R, 0) for some fixed permutation 7

Approach 2: Permutation check
f(x) = f(n(x))vx € H
7T = mle(m)
s 2log|H |-round sum check
Zero check
FGO - f(7())vx € H > @) Y fO) - byley) =0
X€EH yEH

Advantage: % ] permuta%\
 soundness err = (log|H|)?/|F]
Tradeoff: lOng |-round 10g|H |-round
- quasilinear prover time outer sumcheck inner sumcheck

)
xoa >



Efficient Batch Evaluations

Goal: “convince” V that f;(z;) = y;Vi € [k] (f; € Fp|Xq, .. X,])

Prover P(Sp,x, W) Verifier V(S,, x)

PolylOP for batch evaluate

A single evaluation query

on a multilinear polynomial
Requirements

* Prover time = the time complexity of k poly evaluations
* Logarithmic communication/rounds and verification time

Our results State-of-the-arts
 Prover time O (k2#) (optimal) * Halo-infinite [BDFG20] only for univariate polys
» ku-factor improvement (k>13 in HP) * Thaler’s solution has prover time O (k*pu - 2*)

* O(u) communication e
0 (ku) verification time >



The Idea of Plookup (ew2q

Lookup relation: f (H) € T(H) for some preprocessed T and some witness f
Completeness Soundness

Lo 1
1 1 /

— 1 1 1 17 1
w 1T C 5 3 3 1/ 5 >< never appear
0 o— — on the left
w? 3 3 5 5 = 2 / 2 =+ 5 5
8%
o A
invalid 1 2 3 13
* It’seasyto perform rotationin H for 5 / 3 2 /“\4
univariate polynomials: H - wH A /'
» How to do it in the Boolean hypercube : / = vl s <
for multilinear polynomials? 4" "1 >

Multiset Equality Check



HyperPlonk+: Open Problems

* Shifting by k > 1 is useful in some applications (e.g. Halo2)

* Shifting by k is not as easy as shifting by 1
* The linearization trick has an exponential blow-up on the shift distance
* Distance-k shift: 2% evals on f to simulate an eval on f;,

e Can we implement a distance-k shift more efficiently?

)



