
Binyi Chen
Espresso Systems

Dan Boneh
Stanford

Zhenfei Zhang
Espresso Systems

Benedikt Bünz
Espresso, Stanford, NYU

Hyperplonk:	Plonk	with	linear-time	
prover	and	high	degree	gates



Preprocessing	(zk)-SNARKs

SNARK =	A	succinct proof	showing	that	∃𝒘 s.t. 𝐶(𝒙,𝒘) 	= 0

small	size fast	to	verify

Why	so	popular	recently?	Outsourcing	computation

Computation	happens	locally Computation	goes	remote/global



Blockchain
network

Application:	Blockchain
SNARK =	A	succinct proof	showing	that	∃𝒘 s.t. 𝐶(𝒙,𝒘) 	= 0

Prover

verify

More	applications:	zkRollup,	zkEVM,	zkBridge,	DSNs,	zkML

block	
proof



Preprocessing	(zk)-SNARKs

• Fast prover	for	large statements	(e.g.,	as	fast	as	computation)
• Small	proof	size	and	efficient	verification
• Powerful	circuit	constraint	systems	(e.g.,	high-deg/lookup	gates)
• Hardware-friendliness

Call	for:	



Our	Contributions

• HyperPlonk+	PolyIOP
• Linear-time	 prover,	no	use	of	FFT-friendly	field

• The	first	linear-time SNARK	that	has	expressive	gate	support	 and	small	proof	size
• Hardware-optimization	friendly

• Native	high-degree	 custom	gate	support
• Better	support	than	Plonk	[GWC19]

• Lookup	gate	support
• The	first	linear-time	PolyIOP for	the	lookup	 relation!

• Towards	strict	linear-time	SNARKs:	 Orion+	PCS
• Improve	opening	size	of	the	state-of-the-arts	 (Orion	&	Brakedown)

• 5MB	proof	->	<10KB	proof

• Active	 industry	deployment/development
• E.g.,	ETH	Foundation/Scroll	 actively	develop	 it	for	future	zkEVM solutions



General	paradigm	for	modern	SNARKs

Many	SNARKs	are	built	in	two	steps:

polynomial
interactive

oracle	proofs
(poly-IOP)

polynomial
commitment

scheme

(zk)SNARK	for	general	circuits

PLONK,
Sonic,
Marlin,
Libra,
…

KZG,
IPA-based,
FRI-based,
DARK,
…



Polynomial	 IOP[BCS16,CHMMVW19,BFS19]

Prover	P(Sp,𝒙, 𝒘) Verifier	V(Sv,	𝒙 )

𝑟1 ⇽ 𝔽/𝑟1

𝑟2 ⇽ 𝔽/𝑟2

⋮
𝑟123 ⇽ 𝔽/

𝑟123

Verify:𝑓1,	…,	𝑓t(𝑟1,	…,𝑟123)

can	query	𝑓<
at	any	𝑥 in	𝔽/

𝑓1 ∈ 	𝔽/
(?@) 𝑋 	Oracle

𝑓2 ∈ 	𝔽/
(?@) 𝑋 	Oracle

𝑓𝑡 ∈ 	𝔽/
(?@) 𝑋 	Oracle

Can	extend	to	
multivariate	

polynomial	 setting

𝑞 ∈ 	𝔽/
(?@) 𝑋 	Oracle



Polynomial	Commitment	[KZG10]

pp	←	Setup(𝒅)

Prover Verifier

commit(pp,	f,	𝑟)	⇾ “short” comf

pp, 𝒇∈	𝔽/
(?@ ) 𝑋 , 𝒓 pp

Committing	phase

Binding:	cannot	output	two	valid	openings	 (𝑓3,	𝑟3),	(𝑓H ,	𝑟H)		for	comf.

Optional:	commitment	 𝒄𝒐𝒎𝒇	is	hiding



Polynomial	Commitment

Goal:		“convince”	V	that	𝑓 𝑧 = 𝑦 and	𝒄𝒐𝒎𝒇 =commit(pp,	𝑓,	𝑟)

Eval	is knowledge	sound:	
• V	accepts	⇒ P	“knows”	𝒇∈	𝔽/

(?@) 𝑋 , 𝒓 s.t. 	𝑓 𝑧 = 𝑦 and	𝒄𝒐𝒎𝒇 =commit(pp,	𝑓,	
𝑟)

Prover Verifier

proof	𝜋

𝒙 = (𝑝𝑝, 𝒄𝒐𝒎𝒇, 𝑧, 𝑦), 𝒘 = (𝒇, 𝒓) 𝒙 = (𝑝𝑝, 𝒄𝒐𝒎𝒇, 𝑧, 𝑦)

Evaluation	phase

Accept/Reject

Optional:	 Eval is	 zero	knowledge:	𝜋 “reveals	 nothing”	 about	𝑓.



Outline

• A	generic	framework	for	proving	circuit	relations

• High-degree	gates	support

• Hyperplonk+:	support	lookup	on	the	Boolean	hypercube

• Evaluations



Outline

• A	generic	framework	for	proving	circuit	relations

• High-degree	gates	support

• Hyperplonk+:	support	lookup	on	the	Boolean	hypercube

• Evaluations



Workflow	 [GWC19]

Compile	a	circuit	 to	a	trace

Encode	the	trace	as	polynomials

Prove	that	the	trace	encodes	a	valid	circuit	computation

Gate	identity	check Wiring	identity	check



PLONK’s	Circuit	Encoding
[GWC19]

𝑥1 𝑥2 𝑤1

+ +

×
77

5 6 1 example	input

11

5 6

7

6 1

The	computation	trace:
inputs: 5,			6,			1
Claimed	 output:	84

Gate	0: 5	, 6	, 11
Gate	1: 6	, 1	, 7
Gate	2: 11, 7, 77
Gate	3: 77	, 7	, 84

left
inputs

right
inputs outputs

(Gate	0) (Gate	1)

(Gate	2)

+

7

84

(Gate	3)



Trace	to	Polynomial

The	computation	trace:
Gate	0 Gate	1 Gate	2 Gate	3

5 6 11 77
6 1 7 7
11 7 77 84

5 6 11 77

6 1 7 7

11 7 77 84

The	polynomials:
L(𝐇) =
R(𝐇) =
O(𝐇) =

Options	of	𝐇:	
• 𝐇 = {1,𝜔,𝜔H, 𝜔U}

• L,	R,	O	are	univariate	polys
• Interpolating	 L,	R,	O	needs	 FFT

• 𝐇 = {00,01,10,11}
• L,	R,	O	are	multilinear	 polys
• Polys	are	in	eval	form,	no	
interpolation

• Free	embedding!



Gate	Check	[GWC19]

Idea:			encode	gate	types	using	a	selector polynomial		S(X)
∀ ℓ = 0,… , 𝐶 − 1:			

S(𝐻ℓ)	=	1			if			gate	#𝑙 is	an	addition	gate
S(𝐻ℓ)	=	0			if			gate	#𝑙 is	a	multiplication	gate

The	polynomials:
5 6 11 77

6 1 7 7

11 7 77 84

L(𝐇) =
R(𝐇) =
O(𝐇) =

1 1 0 1S(𝐇) =
𝑥1 𝑥2 𝑤1

+ +

×
77

11

5 6

7

6 1
(Gate	0) (Gate	1)

(Gate	2)

+

7

84

(Gate	3)



Gate	Check	[GWC19]

The	zero-check:	∀ 𝑦 ∈ 𝐻 :

S 𝑦 ⋅ 𝐿 𝑦 + 𝑅 𝑦 + 1 − 𝑆 𝑦 ⋅ [𝐿 𝑦 ⋅ 𝑅 𝑦 ] = 𝑂 𝑦

1 ⋅ 𝐿 𝑦 + 𝑅 𝑦 + 1− 1 ⋅ (𝐿 = 𝑂 𝑦

Addition	gate
0 ⋅									+ 1 − 0 ⋅ [𝐿 𝑦 ⋅ 𝑅 𝑦 ] = 𝑂 𝑦

Multiplication	 gate

The	polynomials:
5 6 11 77

6 1 7 7

11 7 77 84

L(𝐇) =
R(𝐇) =
O(𝐇) =

1 1 0 1S(𝐇) =
𝑥1 𝑥2 𝑤1

+ +

×
77

11

5 6

7

6 1
(Gate	0) (Gate	1)

(Gate	2)

+

7

84

(Gate	3)



Gate	Check	[GWC19]

ZeroCheck
𝑓 𝑦 = 0∀𝑦 ∈ 𝐻

SumCheck
∑ 𝑓 𝑦 ⋅ 𝑒𝑞g(𝑦)h∈i = 0

Univariate	Sumcheck:	requires	FFTs
Multivariate	Sumcheck:	linear	prover	time!

Intuition:	rand	 linear	combine

The	polynomials:
5 6 11 77

6 1 7 7

11 7 77 84

L(𝐇) =
R(𝐇) =
O(𝐇) =

1 1 0 1S(𝐇) =
𝑥1 𝑥2 𝑤1

+ +

×
77

11

5 6

7

6 1
(Gate	0) (Gate	1)

(Gate	2)

+

7

84

(Gate	3)



Wiring	Identity	Check

The	computation	trace:

inputs: 5,								6,							1

Gate	0: 5	, 6	, 11
Gate	1: 6	, 1	, 7
Gate	2: 11, 7, 77
Gate	3: 77	, 7	, 84
All	slots	with	the	same	color	
should	have	identical	values!

L R O

𝐿, 𝑅, 𝑂
=

𝜋(𝐿, 𝑅, 𝑂)

for	some	fixed	permutation 𝜋

[GWC19]

𝑥1 𝑥2 𝑤1

+ +

×
77

11

5 6

7

6 1
(Gate	0) (Gate	1)

(Gate	2)

+

7

84

(Gate	3)



Permutation	Check
Prove	 𝐿, 𝑅, 𝑂 = 𝜋(𝐿,𝑅,𝑂) for	some	fixed	permutation 𝜋
Approach	1: Permutation check: 𝑓 𝑥 = 𝑓 𝜋 𝑥 ∀𝑥 ∈ 𝐻

Product check: ∏ 𝑓 𝑥 = 𝑠l∈i

Multi-set check
(𝑓<, 𝑖) <∈i = (𝑓<, 𝜋<) <∈i

Zero check
𝑓 𝑥 = 0	∀𝑥 ∈ 𝐻

Need	 𝔽 > 𝐻

Advantage: Linear	prover	time
Tradeoff:	Not	super	fit	for	“small”	fields

Approach	2:

Zero check
𝑓 𝑥 − 𝑓 𝝅p 𝑥 ∀𝑥 ∈ 𝐻

𝝅p = 𝑚𝑙𝑒 𝜋

2log 𝐻 -round sum check
Naïve	prover:	quadratic	 runtime
Our	result:	quasilinear	 proving	 time

Advantage: soundness	 err =	 log 𝐻 H/ 𝔽
Tradeoff:	quasilinear	 prover

degree	blowup



Hyperplonk:	Components

Sumcheck: ∑ 𝑓 𝑋 = 𝑠	l∈i

Zero check
𝑓 𝑥 = 0	∀𝑥 ∈ 𝐻

Product check: ∏ 𝑓 𝑥 = 𝑠l∈i

Permutation check
𝑓 𝑥 = 𝑓 𝜋 𝑥 ∀𝑥 ∈ 𝐻

Multi-set check
(𝑥3,<, 𝑥H,<) <∈i

= (𝑦3,<, 𝑦H,<) <∈i

Gate Check
𝐶 𝑥, 𝑤 = 0

Hyperplonk

Lookup
𝑓 𝐻 ⊆ 𝑇(𝐻)

Hyperplonk+

Recipe	for	linear	prover	&	avoid	FFTs
𝐻: Boolean	hypercube
𝑓:multivariate	polynomials



The	last	mile	to	success:	batching

Prover	P(Sp,𝒙, 𝒘) Verifier	V(Sv,	𝒙 )
Preprocessor	S(𝐶) 𝑆 𝑥 , 𝜋 𝑥oracle

𝐿(𝑥), 𝑅(𝑥), 𝑂(𝑥)oracle

can	be	a	single	 commitment

A	single evaluation	 query	
on	a	multilinear	 polynomial

PolyIOP for	batch	evaluate 14+	poly	eval	queries?

many	PCS	eval	proofs	�

PolyIOP for	gate	check	

PolyIOP for	wiring	check	
The	underlying	 Sumchecks
can	be	batched

A	single PCS	eval	proof
in	the	SNARK

�

BatchEval PolyIOP
• Prover	time	𝑂 𝑘2{ (optimal)
• 𝑘𝜇-factor	improvement
• 𝑂(𝜇) communication
• 𝑂 𝑘𝜇 verification	time



Outline

• Adapt	Plonk	to	the	Boolean	hypercube

• High-degree	gates	support

• Hyperplonk+:	support	lookup	on	the	Boolean	hypercube

• Evaluations



Hyperplonk:	High-degree	Gates

S 𝑦 ⋅ 𝐿 𝑦 + 𝑅 𝑦 + 1 − 𝑆 𝑦 ⋅ [𝐿 𝑦 ⋅ 𝑅 𝑦 ] = 𝑂 𝑦 	∀𝑦 ∈ 𝐻}~1��

S 𝑦 ⋅ 𝐿 𝑦 + 𝑅 𝑦 + 1 − 𝑆 𝑦 ⋅ [𝑮(𝑳 𝒚 ,𝑹 𝒚 )] = 𝑂 𝑦 	∀𝑦 ∈ 𝐻}~1��

high	degree,	 e.g.,	𝐿 𝑦 � + 𝑅(𝑦)

Benefit: reduce	the	size	of	the	circuit/witness	 ->	faster	prover

The	gate	formula	can	be	more	general
e.g.	more	selectors	 and	more	different	 custom	gates

E.g.: ECC	addition,	Rescue	hash,	etc…



Hyperplonk:	High-degree	Gates

Plonk:	more	expensive	quotient	check
• Quotient	 polynomial	𝒒 𝑿 has	degree	𝑂(𝑑𝑛)
• Commit	𝒒 𝑿 	->	increase	 group	operations	�
• Higher	degree	 poly-mul ->	larger-sized	FFTs	�
• In	practice,	deg	≤ 8 �

Quotient	Check
𝑓 𝑋 = 𝑍𝑒𝑟𝑜i 𝑋 ⋅ 𝒒 𝑿

Hyperplonk:	efficient	multivariate	sumcheck
• Only 𝑂�(𝑑𝑛)	field-operations	 �
• Allows	much	higher	degree	�

V.S.

Sumcheck
∑ 𝑓 𝑦 ⋅ 𝑒𝑞	(𝑦, 𝑟)h∈�� = 0



Efficient	Sumcheck for	High-degree	Polynomials

Prover Verifier

Goal:		“convince”	V	that	∑ 𝑓 𝑋 = 𝑠	l∈��

𝑟{ 𝑋 = ∑ 𝑓 𝑏,𝑋 	�∈����

check	𝑟{ 0 + 𝑟{ 1 = 𝑠𝛼� ← 𝔽/

𝛼< ← 𝔽/

𝑟< 𝑋 = ∑ 𝑓 𝑏, 𝑋, 𝛼<�3, … , 𝛼{ 	�∈����

……

check	𝑟< 0 + 𝑟< 1 = 𝑟<�3(𝛼<�3)

……
……

check	𝑓 𝛼3 ,… , 𝛼{ = 𝑟3 (𝛼3 )

Optimizations	to	the	classic	Sumcheck [LFKN92]
• Sending	𝑟<	as	univariate	oracles	(𝑑 field	elems ->	1	group	elem)
• Decrease	the	number	of	queries	per	round:	 3	queries	->	1	query
• More	efficient	algorithm	for	computing	Sumcheck for	high-degree	polynomials

• 𝑂 2�𝑑H → 𝑂(2{𝑑logH𝑑) (and	𝑂(2{𝑑log𝑑) for	certain	custom	gates)
• In	practice,	replace	FFTs	with	Karatsuba

No	proof	 size/verifier	
dependence	 on	𝑑 anymore



Evaluations:	High-degree	Gates

• Degree	32	is	only	
30%	more	expensive	
than	degree	2



Outline

• Adapt	Plonk	to	the	Boolean	hypercube

• High-degree	gates	support

• Hyperplonk+:	support	lookup	on	the	Boolean	hypercube

• Evaluations



Lookup	Gates

+

11

5 6
(Gate	i)

Range	check:

Bit	operation:

⊕
5=101 6=110

(Gate	i)

3=011

Expensive	to	express	
with	arithmetic	gates

0

1

2

…

216-1

(0,0,0)

…

(5,6,3)

…

(15,8,7)

precomputed

𝑥, 𝑦, 𝑧 ∈ 0,1 �× 0,1 �× 0,1 �

𝑥 ∈ [0. . 23�)

1	lookup	gate	suffices!	

∈ {𝟎, 𝟏,… , 𝟐𝟏𝟔}

Why	so	useful:
• Efficient	 random	memory	accessing
• Reuse	 precomputed	correlated	tuples



𝒉 𝒉↻𝒉

1

1

1

2

2

3

3

4

𝒉↻

1

1

2

2

3

3

4

1

The	Idea	of	Plookup [GW20]

Lookup	relation:	𝑓 ⊆ 𝑇 for	some	preprocessed	 table	𝑇 and	some	witness	 vector	𝑓

𝒇

1

1

3

2

𝑻

1

2

3

4

⊆

𝒇

1

1

3

2

𝒇

1

1

3

2

𝑻

1

2

3

4

𝑻↻

2

3

4

1

=

• It’s	easy	to	shift	on	𝐻 for	univariate	
polynomials:	𝑓 𝐻 → 𝑓(𝜔𝐻)

• How	to	do	it	in	the	Boolean	hypercube	
for	multilinear	polynomials?

1

𝜔

𝜔H

𝜔U

𝐻

Lookup	relation

Multiset	Equality	Check
Poly-IOP



Shift	in	the	Boolean	Hypercube

Step	1:	Shift	 on	 the	Boolean	 hypercube	 from	 a	multiplication	 in	𝐺𝐹(2{)

Let	𝑝{ 𝑋 ∈ 𝔽H
{ 𝑋 be	a	primitive	polynomial

𝔽H 𝑋 /(𝑝�) ≅ 𝐺𝐹 2{ and	𝑋 is	a	generator!

E.g.	𝑝{ 𝑋 = Xª + X + 1

𝑢 = (𝑏U,𝑏H,𝑏3, 𝑏¬) ∈ 𝔽H­ 	\	{0}

𝑏U𝑋U + 𝑏H𝑋H + 𝑏3𝑋+ 𝑏¬ multiply	 X
𝑏U𝑋ª + 𝑏H𝑋U + 𝑏3𝑋H + 𝑏¬𝑋

= 𝑏H𝑋U + 𝑏3𝑋H + (𝑏¬⊕𝑏U)𝑋 + 𝑏U
next(𝑢) = (𝑏H,𝑏3,𝑏¬ ⊕𝑏U,𝑏U) ∈ 𝔽H­ 	\	{0}

Cool	 connection	 w/	short	 PCP
[Ben-Sasson,	 Sudan	 05]

Caveats
• 𝑏¬ ⊕ 𝑏U = 𝑏¬ + 𝑏U − 2𝑏¬𝑏U is	quadratic
• Individual	deg	of	𝑓 next 𝑋 = 2
• Naïve	MSET	check	on 𝑓 next 𝑋

• Θ(𝑛H) sumcheck prover

0001 0010 0100 1000 0011 0110

1110 0111 1010 0101 1011 1100

1111 1101 1001



Shift	in	the	Boolean	Hypercube
Step	2:	Simulate	𝑓(next 𝑋 ) on	the	Boolean	hypercube using	the	multilinear 𝑓(X)!			

multiply	 X𝑢 = (𝑏U,𝑏H,𝑏3, 𝑏¬) ∈ 𝔽H­ 	\	{0} next(𝑢) = (𝑏H,𝑏3,𝑏¬ ⊕𝑏U,𝑏U) ∈ 𝔽H­ 	\	{0}

Define
𝑓↻ 𝑋U,… ,𝑋¬ ≔ 𝑿𝟑 ⋅ 𝑓 𝑋H,𝑋3,1 − 𝑋¬,1	 + 𝟏 −𝑿𝟑 ⋅ 𝑓(𝑋H,𝑋3,𝑋¬,0)

Idea:	enumerate	𝑏U and	linearize	next()!

Case	𝒃𝟑 = 𝟏:				
𝑓↻ 𝑏U,… , 𝑏¬ ≔ 𝟏 ⋅ 𝑓 𝑏H,𝑏3,1 − 𝑏¬,1 					+ 𝟏− 𝟏 ⋅ 𝑓 0,𝑋¬,𝑋3,𝑋H = 𝑓 𝑏H,𝑏3,𝑏¬ ⊕ 𝑏U,𝑏U	

	= 𝑓 next 𝑏U, … , 𝑏¬Case	𝒃𝟑 = 𝟎:	
			𝑓↻ 𝑏U,… ,𝑏¬ ≔ 𝟎 ⋅ 𝑓 𝑏H,𝑏3,1− 𝑏¬,1 .					+	 𝟏− 𝟎 ⋅ 𝑓 𝑏H,𝑏3,𝑏¬,0 = 𝑓 𝑏H,𝑏3,𝑏¬ ⊕ 𝑏U,𝑏U

= 𝑓 next 𝑏U,… ,𝑏¬

Property	1: 𝑓↻ 𝑋 = 𝑓(next 𝑋 ) on	the	Boolean	hypercube!	



Property	2: Can	simulate	 eval	of	𝑓↻ from	2	evals	of	𝑓

Shift	in	the	Boolean	Hypercube
Step	2:	Simulate	𝑓(next 𝑋 ) on	the	Boolean	hypercube using	the	multilinear 𝑓(X)!			

multiply	 X𝑢 = (𝑏U,𝑏H,𝑏3, 𝑏¬) ∈ 𝔽H­ 	\	{0} next(𝑢) = (𝑏H,𝑏3,𝑏¬ ⊕𝑏U,𝑏U) ∈ 𝔽H­ 	\	{0}

Define
𝑓↻ 𝑋U,… ,𝑋¬ ≔ 𝑿𝟑 ⋅ 𝑓 𝑋H,𝑋3,1 − 𝑋¬,1	 + 𝟏 −𝑿𝟑 ⋅ 𝑓(𝑋H,𝑋3,𝑋¬,0)

Idea:	enumerate	𝑏U and	linearize	next()!

The	 lookup	PolyIOP can	run	sumcheck given	oracles	𝑇, ℎ

lookup	PIOP	with	linear	prover	time!

No	need	 to	build/check
𝑇(next 𝑋 ), ℎ(next 𝑋 )



Outline

• Adapt	Plonk	to	the	Boolean	hypercube

• High-degree	gates	support

• Hyperplonk+:	support	lookup	on	the	Boolean	hypercube

• Evaluations



Evaluations

• Proof	size	(𝜇=20)(with	KZG	PCS)
• Plonk	~1kb
• HP	4.7kb
• Spartan	40kb

• Implementation
• Jellyfish:	highly	optimized
• HP:	many	possible	 improvements

• Prover	time
• HP	outperforms	Plonk	at	23ª;	at	
2H¬ HP	is	60%	faster	then	Plonk

• Fewer	constraints	needed	than	
Spartan	for	the	same	application



37.4% Multi-exp

61.0% MLE Operations

01.6% Rest

Cost	Breakdown

Bottleneck
PCS	commitments and	batch	openings

Potential	optimizations
• many	eval	points	and	polys	are	identical	
• Batching	all	zero-checks

Further	improvements	on	hardware
• Multi-exps and	sumchecks are	highly	

parallelizable	 and	hardware-friendly
40.6% Batch Open

14.2% Perm Check

17.3% Circuit Check

25.9% Commit witness

02.0% Rest



Summary	&	Open	problems

• HyperPlonk+	PolyIOP
• Linear-time	prover,	no	use	of	FFT-friendly	field
• Native	high-degree	custom	gate	support
• Lookup	gate	support	with	linear-time	prover
• Concretely	efficient

• Open	problems
• Degree	𝑘 > 1 shifts?

• Our	technique:	 needs	2· evals	on	𝑓 to	simulate	an	eval	on	𝑓↻
• Linear-time	 permutation	 argument	for	fields	with	small	 characteristics



Thank	you!
https://eprint.iacr.org/2022/1355.pdf



Permutation	Check
Prove	 𝐿, 𝑅, 𝑂 = 𝜋(𝐿,𝑅,𝑂) for	some	fixed	permutation 𝜋
Approach	1: Permutation check

𝑓 𝑥 = 𝑓 𝜋 𝑥 ∀𝑥 ∈ 𝐻

Product check: ∏ 𝑓 𝑥 = 𝑠l∈iMulti-set check
(𝑓< , 𝑖) <∈i = (𝑓< , 𝜋<) <∈i

Zero check
𝑓 𝑥 = 0	∀𝑥 ∈ 𝐻

𝐻 / 𝔽
soundness	 err

Advantage:
• Linear	prover	time
Tradeoff:
• Not	super	fit	for	“small”	fields



Permutation	Check
Prove	 𝐿, 𝑅, 𝑂 = 𝜋(𝐿,𝑅,𝑂) for	some	fixed	permutation 𝜋
Approach	2:

𝝅p = 𝑚𝑙𝑒 𝜋
2log 𝐻 -round sum check

¸ 𝑎g 𝑥 ⋅ ¸ 𝑓 𝑦 ⋅ 𝑏º 𝑥, 𝑦 = 0
h∈il∈i

𝜋 is	a	permutation

log 𝐻 -round 
outer sumcheck

log 𝐻 -round 
inner sumcheck

Advantage:
• soundness	err =	 log 𝐻 H/ 𝔽
Tradeoff:
• quasilinear	prover	time

Permutation check
𝑓 𝑥 = 𝑓 𝜋 𝑥 ∀𝑥 ∈ 𝐻

Zero check
𝑓 𝑥 − 𝑓 𝝅p 𝑥 ∀𝑥 ∈ 𝐻

𝒙 → 𝜶



Our	results
• Prover	time	𝑂 𝑘2{ (optimal)
• 𝑘𝜇-factor	improvement	 (k>13	in	HP)
• 𝑂(𝜇) communication
• 𝑂 𝑘𝜇 verification	 time

Efficient	Batch	Evaluations
Goal:	 	“convince”	V	that	𝑓< 𝑧< = 𝑦<∀𝑖 ∈ [𝑘] (𝑓< ∈ 𝔽/ 𝑋3,… , 𝑋{ )

Requirements
• Prover	time	≈ the	time	complexity	of	k	poly	evaluations
• Logarithmic	communication/rounds	and	verification	time

PolyIOP for	batch	evaluateProver	P(Sp,𝒙, 𝒘) Verifier	V(Sv,	𝒙 )

A	single evaluation	 query	
on	a	multilinear	 polynomial

State-of-the-arts
• Halo-infinite	[BDFG20]	only	for	univariate	polys
• Thaler’s	solution	has	prover	time	𝑂(𝑘H𝜇 ⋅ 2{)



The	Idea	of	Plookup [GW20]

Lookup	relation:	𝑓 𝐻 ⊆ 𝑇 𝐻 for	some	preprocessed	𝑇 and	some	witness	𝑓

𝒇

1

1

3

2

𝑻

1

2

3

4

⊆

𝒇

1

1

3

2

𝒇

1

1

3

2

𝑻

1

2

3

4

𝑻↻

2

3

4

1

=

𝒉 𝒉↻

?
5

5 5

𝒉

…

…

?

5

5

…

…

…

𝒉↻

…

…

5

5

?

…

…

…

≠

• It’s	easy	to	perform	rotation	in	𝐻 for	
univariate	polynomials:	𝐻 →𝜔𝐻

• How	to	do	it	in	the	Boolean	hypercube	
for	multilinear	polynomials?

1

𝜔

𝜔H

𝜔U

𝐻

𝒉

1

1

1

2

2

3

3

4

𝒉↻

1

1

2

2

3

3

4

1

Lookup	relation

Multiset	 Equality	Check

invalid

never	 appear
on	 the	left

Completeness Soundness



HyperPlonk+:	Open	Problems

• Shifting	 by	k	>	1	is	useful	in	some	applications	(e.g.	Halo2)

• Shifting	 by	k	is	not	as	easy	as	shifting	by	1
• The	 linearization	 trick	has	an	exponential	 blow-up	on	the	shift	distance
• Distance-𝑘 shift:	2· evals	on	𝑓 to	simulate	 an	eval	on	𝑓↻

• Can	we	implement	a	distance-𝒌 shift	more	efficiently?


