
LatticeFold & its Applications

Binyi Chen, Dan Boneh

Stanford University

Succinct Non-Interactive Argument of Knowledge

2

(zk)SNARK ≈ Proof of correct computation
Given circuit 𝑪, instance 𝑥, I know witness 𝑤 s.t. 𝑪 𝑥, 𝑤 = 0

E.g. knowledge of secret key/hash preimage

𝑝𝑘𝐶 , 𝑣𝑘𝐶 ← Setup 𝑪

Prove 𝑝𝑘𝐶 , 𝑥, 𝑤 → 𝜋 Verify 𝑣𝑘𝐶 , 𝑥, 𝜋 → 0/1

Succinctness: 𝜋 is small and cheap to verify

Scaling Blockchains

3

Smart-contract Blockchain: (oversimplified)

𝑡𝑥1

𝑡𝑥2

…

𝑡𝑥𝑛

𝑡𝑥1

𝑡𝑥2

…

𝑡𝑥𝑛

𝑠𝑡VM state 𝑠𝑡′

𝑠𝑡 𝑠𝑡′

𝑡𝑥1

𝑡𝑥2

…

𝑡𝑥𝑛

𝑡𝑥1

𝑡𝑥2

…

𝑡𝑥𝑛

𝑠𝑡 𝑠𝑡′

𝑠𝑡 𝑠𝑡′

Redundant execution ⇒ poor throughput/latency

Scaling Blockchains

4

Based Rollup: (oversimplified)

𝑠𝑡 𝑠𝑡′

𝑡𝑥1 … 𝑡𝑥𝑛

SNARK 𝜋 Commit(𝑡𝑥𝑠)

𝜋, 𝑠𝑡′

Commit(𝑡𝑥𝑠)

𝜋, 𝑠𝑡′

Commit(𝑡𝑥𝑠)

𝜋, 𝑠𝑡′

Commit(𝑡𝑥𝑠)

𝜋, 𝑠𝑡′

Verify proof

Verify proofVerify proof

Verify proof

𝑠𝑡 → 𝑠𝑡′

𝑠𝑡 → 𝑠𝑡′ 𝑠𝑡 → 𝑠𝑡′

𝑠𝑡 → 𝑠𝑡′

How to compute 𝜋 efficiently?

Prover

Much cheaper!

Monolithic SNARKs

5

𝑧0 = 𝑠𝑡 𝐹 𝐹𝑧1

𝑡𝑥1

𝑧2

𝑡𝑥2

…… 𝑧𝑛−1 𝐹 𝑧𝑛 = 𝑠𝑡′

𝑡𝑥𝑛

𝑪 𝑥 = 𝑧0, 𝑧𝑛 , cm , 𝑤 ← 𝑓 exec_trace = 0

cm = Commit ()

Run a SNARK (e.g., Plonk/STARK)

Proof 𝜋

Large, can’t start proving without it

Memory/computation intensive

transform to a circuitFix 𝑛Can’t support dynamic 𝑛

E.g., FFTs, MSMs

Huge circuit

VM execution:

Piecemeal SNARKs (IVC/PCD)

6

𝐹 𝑧𝑖+1

SNARK. 𝑉

𝑡𝑥𝑖

𝑧𝑖−1 𝐹

𝑡𝑥𝑖−1

𝑧𝑖

SNARK
𝜋𝑖 𝜋𝑖+1

SNARK. 𝑉
𝜋𝑖−1

Pros:
• Pipeline proving/witness-gen
• Small memory overhead
• Parallelizable using PCD

Cons:
• Expensive SNARK.V circuit
• SNARK proving still not that cheap

E.g., Mangrove [NDCTB24]

[Valiant08, BCCT12]

Steps 1..i-2
correct

First i steps
executed correctly

Stmnt

Any better way to construct IVC?

IVC/PCD from Folding [BCLMS20,KST21]

7

Homomorphic commitment:

Commit: 𝑤 𝑐𝑤shortlong vector

Homomorphism: 𝑤1 + 𝑤2 𝑐𝑤1+𝑤2
= 𝑐𝑤1

+ 𝑐𝑤2

Why useful? Expensive chk
𝑓 𝑤1, 𝑤2 =? 0

Easy chk

𝑓 𝑐𝑤1
, 𝑐𝑤2

=? 0

IVC/PCD from Folding [BCLMS20,KST21]

8

Folding scheme:

𝑅com ≔ 𝑢 = 𝑥, 𝑐𝑤 , 𝑤 ∶ 𝑥, 𝑤 ∈ 𝑅𝑁𝑃 ∧ 𝑐𝑤 = Comm(𝑤)

𝑢1, 𝑤1

𝑢2, 𝑤2

Fold. 𝑃
෤𝑢, ෥𝑤 ∈ 𝑅com

𝜋

𝑢1, 𝑢2

෤𝑢, 𝜋
Fold. 𝑉 0/1

Completeness + Knowledge soundness

Faster than SNARK.P! Cheaper than SNARK.V!

≈LinComb 2 commitments

𝑥, 𝑤 ∈ 𝑅𝑁𝑃

≈ Compress multiple NP statements into one

[BCLMS20,KST21]: We can construct IVC/PCD from folding schemes!

≈LinComb 2 witnesses

𝑧𝑖−1 𝐹

𝑡𝑥𝑖−1

𝑧𝑖

𝑅𝑁𝑃

IVC/PCD from Folding [BCLMS20,KST21]

9

Fold. 𝑉
𝑢𝑖−1

෤𝑢𝑖−1

𝜋𝑖−1

෤𝑢𝑖

𝐹

Fold. 𝑉

𝑅𝑁𝑃

build inst-witness

𝑢𝑖, 𝑤𝑖
Fold. 𝑃

෤𝑢𝑖+1, ෥𝑤𝑖+1

𝜋𝑖+1

Fold. 𝑃
෤𝑢𝑖, ෥𝑤𝑖

𝜋𝑖𝑢𝑖−1, 𝑤𝑖−1

෤𝑢𝑖−1, ෥𝑤𝑖−1

“step i-1 is correct”

“steps 1..i-2 are correct” “steps 1..i-1 are correct”

IVC/PCD from Folding [BCLMS20,KST21]

10

Which homomorphic commitment to use?

IVC from folding vs IVC from SNARK:

Extra embedded circuit:Proving algorithm:

Fold. 𝑃

SNARK.P

Much faster

SNARK. 𝑉

Fold. 𝑉 Much smaller

Homomorphic Commitment

11

Option 1: Pedersen

𝑤 ≔ 𝑤1, 𝑤2 … , 𝑤𝑛 ∈ 𝔽𝑝
𝑛 𝑐𝑤 ≔ 𝑔1

𝑤1𝑔2
𝑤2 ⋯ 𝑔𝑛

𝑤𝑛 ∈ 𝔾 ≈ 𝔽𝑞 × 𝔽𝑞

𝑝, 𝑞: ≈256-bit primes

Cons:

• Expensive group exponentiations over large fields 𝔽𝑝, 𝔽𝑞 (256-bit)

• Fold.V ≈ 1 𝔾-exp + hash/field ops over 𝔽𝑝

• need to support both 𝔽𝑝, 𝔽𝑞 ⇒ field emulation (e.g. 𝔽𝑝-ops over 𝔽𝑞)

• Vulnerable to quantum attacks

LatticeFold: Contributions

12

The first folding scheme from lattice-based commitments

• Fast & small fields arithmetics (e.g., 64-bit or 32-bit prime fields)

• Eliminate non-native field emulation in Fold.V

• Messages and commitments live in the same space

• Quantum attacks resistant (based on Lattice assumptions)

• Support high-degree constraint systems (e.g., CCS [STW23])

Ajtai Binding Commitments [Ajtai96]

13

E.g., 𝑞 ≈ 64-bit prime, 𝛽 = 216, 𝑛 ≫ 𝜆

𝑤 ∈ [−𝛽, 𝛽]𝑛long vector 𝑐𝑤 = 𝐴𝑤 mod 𝑞 ∈ ℤ𝑞
𝜆short

𝐴 ← ℤ𝑞
𝜆×𝑛

Homomorphic Property:

𝑐𝑤1
+ 𝑐𝑤2

= 𝐴𝑤1 + 𝐴𝑤2 mod 𝑞 = 𝐴 𝑤1 + 𝑤2 mod 𝑞 = 𝑐𝑤1+𝑤2

Assumption: 𝑤1 + 𝑤2 ∈ −𝛽, 𝛽 𝑛

Cons: committing complexity = 𝑂(𝜆𝑛) 𝔽-ops

Essential for binding

Ring/Module-based Ajtai [LM07,PR07]

14

E.g., 𝑅𝑞 = ℤ𝑞 𝑋 /(𝑋𝑑 + 1) (Polynomials with deg < 𝑑 and ℤ𝑞-coefficients)

Pros:
• E.g., 𝜆 = 𝑑, committing complexity: 𝑂(𝑛/𝑑) 𝑅𝑞-ops ≈ 𝑂(𝑛log𝜆) 𝔽𝑞-ops

• Many hardware optimizations in the FHE/Lattice-signature literature

𝑤 ∈ −𝛽, … , 𝛽 𝑛 𝑐𝑤 = 𝐴𝑤 mod 𝑞 ∈ ℤ𝑞
𝜆shortlong vector

𝐴 ← ℤ𝑞
𝜆×𝑛

෥𝑤 ∈ 𝑅𝑞
𝑛/𝑑

ǁ𝑐𝑤 = ሚ𝐴෥𝑤 ∈ 𝑅𝑞
𝜆/𝑑

ሚ𝐴 ← 𝑅𝑞
𝜆/𝑑×𝑛/𝑑

Coefficients in −𝛽, … , 𝛽

ℤ𝑞
𝑑 → 𝑅𝑞

Challenges of Folding with Ajtai

15

𝑐𝑤1
, 𝑤1

𝑐𝑤2
, 𝑤2

random 𝛾
𝑐𝑤1

+ 𝛾𝑐𝑤2
, 𝑤1 + 𝛾𝑤2 ∉ −𝛽, 𝛽 𝑛 anymore

Challenge: Keep folded witness stay in the bounded msg space

Naïve folding:

Essential for binding/soundness

Re-represent witnesses w/ lower norms

16

𝑐𝑤1
, 𝑤1

𝑐𝑤2
, 𝑤2

Folding: (e.g., 𝑘 = 2 and 𝛽 = 𝑏2)

split

split

𝑐𝑤1
1 , 𝑤1

1 ∈ −𝒃, 𝒃 𝑛

𝑐𝑤1
2 , 𝑤1

2

𝑐𝑤2
1 , 𝑤2

1

𝑐𝑤2
2 , 𝑤2

2

random 𝛾1, 𝛾2, 𝛾3, 𝛾4 ∈ 𝑅𝑞

with small coefficients!

𝑐∗ = combine(𝛾𝑖 , 𝑐𝑤1
1 … 𝑐𝑤2

2)

𝑤∗ = combine(𝛾𝑖 , 𝑤1
1 … 𝑤2

2)

∈ −𝛽, 𝛽 𝑛

Extend to the case where 𝑎 ∈ 𝑅𝑞

Decomposition: 𝑎 ∈ (−𝛽, 𝛽)
split algorithm

𝑎1, … , 𝑎𝑘 ∈ (−𝑏, 𝑏)
(𝛽 = 𝑏𝑘)

𝑎 = 𝑎1 + 𝑏 ⋅ 𝑎2 + ⋯ + 𝑏𝑘−1 ⋅ 𝑎𝑘

Novel range-proofs from Sumchecks

Complication: Fold.P must prove that witnesses are low-norm (i.e. in −𝑏, 𝑏 𝑛)

Performance

17

LatticeFold Pedersen Folding
[KST21, BC23, KS23]

Hash-based Folding
[BMNW24]

Prover time 𝑂 𝑛log𝜆 ℤ𝑞-mul

w/ small 𝑞

𝑂 𝑛 -sized MSM
over large field

𝑂(𝑛) hash

Verifier circuit ≈ 𝑂(𝑏logn) hash 𝑂 1 𝔾-exps
+ non-native 𝔽-ops

𝑂 𝜆log𝑛 ≫ 𝑂(𝑏log𝑛)
hash

“Unbounded”
folding steps

Efficient commit
for sparse vector

𝑛 ≈ # of constraints

Summary & Future Work

18

• LatticeFold: the first lattice-based folding scheme
• Fast & small field; efficient verifier circuit; quantum attacks resistant
• Hardware optimization-friendly + Support high-deg constraint systems

• Updated version
• Optimized folding for high-degree constraint systems (CCS)

• 2 sequential Sumchecks previously, now only 1!

• Future work
• Integrate with Lasso to support table lookups
• Remove the need for witness decomposition/range-check

Thank You

19

https://eprint.iacr.org/2024/257.pdf

https://eprint.iacr.org/2024/257.pdf

	Slide 1: LatticeFold & its Applications
	Slide 2: Succinct Non-Interactive Argument of Knowledge
	Slide 3: Scaling Blockchains
	Slide 4: Scaling Blockchains
	Slide 5: Monolithic SNARKs
	Slide 6: Piecemeal SNARKs (IVC/PCD)
	Slide 7: IVC/PCD from Folding [BCLMS20,KST21]
	Slide 8: IVC/PCD from Folding [BCLMS20,KST21]
	Slide 9: IVC/PCD from Folding [BCLMS20,KST21]
	Slide 10: IVC/PCD from Folding [BCLMS20,KST21]
	Slide 11: Homomorphic Commitment
	Slide 12: LatticeFold: Contributions
	Slide 13: Ajtai Binding Commitments [Ajtai96]
	Slide 14: Ring/Module-based Ajtai [LM07,PR07]
	Slide 15: Challenges of Folding with Ajtai
	Slide 16: Re-represent witnesses w/ lower norms
	Slide 17: Performance
	Slide 18: Summary & Future Work
	Slide 19: Thank You

