LatticeFold & its Applications

Binyi Chen, Dan Boneh Stanford University

Succinct Non-Interactive Argument of Knowledge

(zk)SNARK ≈ Proof of correct computation

Given circuit C, instance x, I know witness w s.t. C(x, w) = 0

E.g. knowledge of secret key/hash preimage

$$(pk_C, vk_C) \leftarrow \text{Setup}(C)$$

 $\text{Prove}(pk_C, x, w) \rightarrow \pi$ $\text{Verify}(vk_C, x, \pi) \rightarrow 0/1$

<u>Succinctness</u>: π is **small** and **cheap** to verify

Scaling Blockchains

Smart-contract Blockchain: (oversimplified)

Redundant execution \Rightarrow poor throughput/latency

Scaling Blockchains

Based Rollup: (oversimplified)

How to compute π efficiently?

Monolithic SNARKs

Huge circuit

Piecemeal SNARKs (IVC/PCD) [Valiant08, BCCT12]

Pros:

- Pipeline proving/witness-gen
- Small memory overhead
- Parallelizable using PCD

E.g., Mangrove [NDCTB24]

Cons:

- Expensive SNARK.V circuit
- SNARK proving still not *that* cheap

Any better way to construct IVC?

Homomorphic commitment:

Commit: long vector $w \longrightarrow \text{short } c_w$

Homomorphism: $w_1 + w_2 \longrightarrow c_{w_1+w_2} = c_{w_1} + c_{w_2}$

Why useful? Expensive chk $f(w_1, w_2) =_? 0$ Easy chk $f(c_{w_1}, c_{w_2}) =_? 0$

Folding scheme: ~ Compress multiple NP statements into one

 $R_{\text{com}} \coloneqq \{(u = (x, c_w), w) : (x, w) \in R_{NP} \land c_w = \text{Comm}(w)\}$

Completeness + Knowledge soundness

[BCLMS20,KST21]: We can construct IVC/PCD from folding schemes!

IVC from folding vs IVC from SNARK:

Which homomorphic commitment to use?

Homomorphic Commitment

<u>Option 1: Pedersen</u> $p, q: \approx 256$ -bit primes

$$w \coloneqq (w_1, w_2 \dots, w_n) \in \mathbb{F}_p^n \quad \longrightarrow \quad c_w \coloneqq g_1^{w_1} g_2^{w_2} \cdots g_n^{w_n} \in \mathbb{G} \approx \mathbb{F}_q \times \mathbb{F}_q$$

Cons:

- Expensive group exponentiations over large fields \mathbb{F}_p , \mathbb{F}_q (256-bit)
- Fold.V ≈ 1 G-exp + hash/field ops over \mathbb{F}_p
 - need to support both \mathbb{F}_p , $\mathbb{F}_q \Rightarrow$ field emulation (e.g. \mathbb{F}_p -ops over \mathbb{F}_q)
- Vulnerable to quantum attacks

LatticeFold: Contributions

The first folding scheme from lattice-based commitments

- *Fast* & *small* fields arithmetics (e.g., 64-bit or 32-bit prime fields)
- Eliminate *non-native* field emulation in Fold.V
 - Messages and commitments live in the same space
- Quantum attacks resistant (based on Lattice assumptions)
- Support high-degree constraint systems (e.g., CCS [STW23])

Ajtai Binding Commitments [Ajtai96]

E.g.,
$$q \approx 64$$
-bit prime, $\beta = 2^{16}, n \gg \lambda$
long vector $w \in [-\beta, \beta]^n \xrightarrow{A \leftarrow \mathbb{Z}_q^{\lambda \times n}}$ short $c_w = Aw \mod q \in \mathbb{Z}_q^{\lambda}$
Essential for binding

Homomorphic Property:

$$c_{w_1} + c_{w_2} = (Aw_1 + Aw_2) \mod q = A(w_1 + w_2) \mod q = c_{w_1 + w_2}$$

Cons: committing complexity = $O(\lambda n)$ F-ops

Ring/Module-based Ajtai [LM07,PR07]

E.g., $R_q = \mathbb{Z}_q[X]/(X^d + 1)$ (Polynomials with deg < d and \mathbb{Z}_q -coefficients)

$$\begin{array}{ll} \text{long vector } w \in \{-\beta, \dots, \beta\}^n & \xrightarrow{A \leftarrow \mathbb{Z}_q^{\lambda \times n}} \text{ short } c_w = Aw \ \text{mod } q \in \mathbb{Z}_q^{\lambda} \\ & \overbrace{W \in R_q^{n/d} \\ \text{Coefficients in } \{-\beta, \dots, \beta\}}}^{\widetilde{W} \leftarrow R_q^{\lambda/d \times n/d}} & \widetilde{c}_w = \widetilde{A} \widetilde{w} \in R_q^{\lambda/d} \\ & \overbrace{A \leftarrow R_q^{\lambda/d \times n/d}}}^{\lambda/d \times n/d} & \widetilde{c}_w = \widetilde{A} \widetilde{w} \in R_q^{\lambda/d} \end{array}$$

Pros:

- E.g., $\lambda = d$, committing complexity: $O(n/d) R_q$ -ops $\approx O(n \log \lambda) \mathbb{F}_q$ -ops
- Many hardware optimizations in the FHE/Lattice-signature literature

Challenges of Folding with Ajtai

Naïve folding:

Challenge: Keep folded witness stay in the **bounded** msg space Essential for binding/soundness

Re-represent witnesses w/ lower norms

Decomposition:
$$a \in (-\beta, \beta)$$

 $(\beta = b^k)$
 $a_1, \dots, a_k \in (-b, b)$
 $a = a_1 + b \cdot a_2 + \dots + b^{k-1} \cdot a_k$
Folding: (e.g., $k = 2$ and $\beta = b^2$)
 $c_{w_1}, w_1 \xrightarrow{\text{split}} \begin{bmatrix} c_{w_1}^1, w_1^1 \in (-b, b)^n \\ c_{w_1}^2, w_1^2 \\ \vdots \\ c_{w_2}^2, w_2 \xrightarrow{\text{split}} \begin{bmatrix} c_{w_2}^1, w_1^2 \\ c_{w_2}^2, w_2^2 \end{bmatrix}$
 $(c_{w_2}^1, w_2 \xrightarrow{\text{split}} \begin{bmatrix} c_{w_2}^1, w_2^1 \\ c_{w_2}^2, w_2^2 \end{bmatrix}$
 $(c_{w_2}^2, w_2^2)$
 $(c_{w_2}^2, w_2^2)$
 $(c_{w_2}^2, w_2^2)$
 $(c_{w_2}^2, w_2^2)$
 $(c_{w_2}^2, w_2^2)$
 $(c_{w_2}^2, w_2^2)$

Complication: Fold.P must prove that witnesses are low-norm (i.e. in $(-b, b)^n$) Novel range-proofs from Sumchecks

Performance

 $n \approx \#$ of constraints

	LatticeFold	Pedersen Folding [KST21, BC23, KS23]	Hash-based Folding [BMNW24]
Prover time	$O(n\log\lambda) \mathbb{Z}_q$ -mul w/ small $q \bigcirc$	O(n)-sized MSM over large field	$O(n)$ hash \bigcirc
Verifier circuit	$\approx O(b \log n)$ hash	0(1) G-exps + non-native F-ops	$O(\lambda \log n) \gg O(b \log n)$ hash 😥
"Unbounded" folding steps			×
Efficient commit for sparse vector			×

Summary & Future Work

- LatticeFold: the **first** lattice-based folding scheme
 - Fast & small field; efficient verifier circuit; quantum attacks resistant
 - Hardware optimization-friendly + Support high-deg constraint systems
- Updated version
 - Optimized folding for high-degree constraint systems (CCS)
 - 2 sequential Sumchecks previously, now only 1!
- Future work
 - Integrate with Lasso to support table lookups
 - Remove the need for witness decomposition/range-check

Thank You https://eprint.iacr.org/2024/257.pdf