LatticeFold & its Applications

Binyi Chen, Dan Boneh
Stanford University

Stanford University

Succinct Non-Interactive Argument of Knowledge

(zk)SNARK = Proof of correct computation

Given circuit C, instance x, | know witnessw s.t. C(x,w) = 0

E.g. knowledge of secret key/hash preimage

(pkc,vk:) < Setup(C)
Prove(pkg; ;c, W) - T Verifyazkc,x, m) > 0/1

Succinctness: is small and cheap to verify

Stanford University

Scaling Blockchains
Smart-contract Blockchain: (oversimplified)

tx1 txl

tx, tx;
e txn

VM state st—=Z| ¢ |E—St

tx, txq
txy tX
st—=[s |F—st’ st—Z[s |;—st’

Redundant execution = poor throughput/latency

Stanford University

Scaling Blockchains
Based Rollup: (oversimplified) How to compute m efficiently?

Prover
7, st’ - T, st’
Commit(txs) £ | : Commit(txs)

'Verify proof

st = st’ Verify proof

&

St — st

_—
Commit(txs) SNARK 1T

st — st’ Verlfy proof

T, st’

Commit(txs)

st — st’ Verify proof

Much cheaper!

Stanford University

Monolithic SNARKSs

Huge circuit

/VM execution:)
ZO:st—> F —> 71 —> F —> Z, —> ecc e —> Zp_ 1" F _>Zn:St,
cm = Commit (txq tx; txn
())

--

Memory/computation intensive léRun a SNARK (e.g., PIonk/STARK)§
E'g., FFTS, MSMS ... 3

Stanford University

Piecemeal SNARKSs (IVC/PCD) [valiantos, BCCT12]

ﬁm nt tx;i_1 \ / tx; \

. .
Zii_l —> F > Zj - F ~ Ziy1
steps1.+2| | SNARK.V I o JSNARK.V ||
correct SNARK First i steps
k / \ / executed correctly
Pros: Cons:
* Pipeline proving/witness-gen * Expensive SNARK.V circuit
* Small memory overhead * SNARK proving still not that cheap
* Parallelizable using PCD Any better way to construct IVC?

E.g., Mangrove [NDCTB24]

Stanford University

IVC/PCD from Folding [BCLMS20,KST21]

Homomorphic commitment:

Commit: long vector w —— short ¢,

Homomorphism: wi+w, —— Cy+w, = Cw, T Cw,

Expensive chk Easy chk
fwy,wy) =, 0 f(cwli CWZ) = 0

Why useful?

Stanford University

IVC/PCD from Folding [BCLMS20,KST21]

Folding scheme: = Compress multiple NP statements into one

Reom = {(u = (x,¢y),w) : (x,w) € Ryp Ac,, = Comm(w)}

~LinComb 2 witnesses

ul, Wl >

N
Fold. P

Uy, Wy —

—

_>7-[

Faster than SNARK.P!

U, Uy —™

~LinComb 2 commitments

Completeness + Knowledge soundness

Fold.V 0/1

Cheaper than SNARK.V!

[BCLMS20,KST21]: We can construct IVC/PCD from folding schemes!

Stanford University

IVC/PCD from Folding [BCLMS20,KST21]

/R NP tXig \ /RNP \
|

— F —— Zj F

Zi—1

Ui_41 —> T _

U Fold Vv A Fold.V

He T build inst-wit _)

K / urld mst-witness

“stepi-1is correct” VSN)
— T; - > Uj;,w; ——

Fold. P Fold. P
Uj—q, Wiy — —— 1, W .
__

“steps 1..i-2 are correct” “steps 1..i-1 are correct”

— Ti41

— > Ui+, Wit

Stanford University

IVC/PCD from Folding [BCLMS20,KST21]

IVC from folding vs IVC from SNARK:

Proving algorithm: Extra embedded circuit:

SNARK.P SNARK.V

Fold. P | Much faster Fold.V| Much smaller

Which homomorphic commitment to use?

Stanford University

Homomorphic Commitment

Option 1: Pedersen p, q: =256-bit primes

W = (Wll %%} ,Wn) € IF?I} —_— CW — g{vlggjz g;/‘l}n € (G =~ [Fq X]Fq

Cons:

 Expensive group exponentiations over large fields IF, F, (256-bit)
* Fold.V = 1 G-exp + hash/field ops over IF,,

* needtosupportboth IF), F, = field emulation (e.g. [F,-ops over ;)

* Vulnerable to quantum attacks

Stanford University 1

LatticeFold: Contributions

The first folding scheme from lattice-based commitments

Fast & small fields arithmetics (e.g., 64-bit or 32-bit prime fields)

Eliminate non-native field emulation in Fold.V

* Messages and commitments live in the same space

Quantum attacks resistant (based on Lattice assumptions)

Support high-degree constraint systems (e.g., CCS [STW23])

Stanford University

12

Ajtal Binding Commitments [Ajtaio6]

E.g., g = 64-bit prime, f = 216, n > A

long vector w € [—f, B]"

Essential for binding

> short ¢,, = Awmod q € Z{}

Homomorphic Property:

Assumption: wy + wy € [—B, B]"
Cw, T Cw, = (Aw; + Aw,) mod q = A(w; + wy) mod q = ¢y 4,

Cons: committing complexity = O(4An) F-ops

Stanford University 13

Ring/Module-based Ajtai [LMo07,PR0O7]

E.g., Ry = Zy[X]/(X? + 1) (Polynomials with deg < d and Z-coefficients)

AXn
A < L > short cszwmoquZ{l1

d _
A/d

~ n/d ~ ~
W ER > = Aw € R

g . pA/dxn/d w = AWE T
Coefficientsin {—p, ..., B} A «— Rq

long vectorw € {—f, ..., B}"

Pros:
* E.g., 1 =d, committing complexity: O(n/d) R,-ops = 0(nlogl) IF,-ops

* Many hardware optimizations in the FHE/Lattice-signature literature

Stanford University 14

Challenges of Folding with Ajtai

Naive folding:

CW1) Wl

randomy

Cw, T VCw,, [W1 + yw,] ¢ [—B, B]™ anymore

CWZ) W2

Challenge: Keep folded witness stay in the bounded msg space

Essential for binding/soundness

Stanford University 15

Re-represent witnesses w/ lower norms

Extend to the case where a € Rq

split algorithm
p(ﬁ_gbk) » ay, .., ay € (—b,b)
B a=a;+b-a,+-+bf1.q

Decomposition: a € (=8, /)

Folding: (e.g., k = 2 and B = b?)

L, ,w} € (—b,b)"

CW1) Wl 1

o Cor WY ¢* = combine([y],[c}, ...c2.])
- . randomyy, Y2, ¥3,¥a €Rg A 4 W 1)
- with small coefficients! []
CV1V2, w3 [W* = combine([y;], [w] ...w3])]

C Wy —
Wz’ 2 Spllt 5) € [_ﬁlﬂ]n

CWZ) WZ

Complication: Fold.P must prove that witnesses are low-norm (i.e. in (—b, b)™)
Novel range-proofs from Sumchecks

Stanford University 16

Performance

n ~ # of constraints

LatticeFold

Hash-based Folding
[BMNW24]

Pedersen Folding
[KST21, BC23, KS23]

Prover time 0(nlogA) Z,-mul

w/small g ©

Verifier circuit ~ O0(blogn) hash

“Unbounded”

folding steps
Efficient commit
for sparse vector

0(n)-sized MSM 0(n) hash @

over large field

0(1) G-exps 0(Alogn) >» 0(blogn)
+ non-native F-ops hash @

X
X

Stanford University

17

Summary & Future Work

* LatticeFold: the first lattice-based folding scheme
* Fast & small field; efficient verifier circuit; quantum attacks resistant
* Hardware optimization-friendly + Support high-deg constraint systems

* Updated version
 Optimized folding for high-degree constraint systems (CCS)
* 2 sequential Sumchecks previously, now only 1!

* Future work
* Integrate with Lasso to support table lookups
* Remove the need for witness decomposition/range-check

Stanford University

18

Thank You

https://eprint.iacr.org /2024 /257 .pdf

Stanford University 19

https://eprint.iacr.org/2024/257.pdf

	Slide 1: LatticeFold & its Applications
	Slide 2: Succinct Non-Interactive Argument of Knowledge
	Slide 3: Scaling Blockchains
	Slide 4: Scaling Blockchains
	Slide 5: Monolithic SNARKs
	Slide 6: Piecemeal SNARKs (IVC/PCD)
	Slide 7: IVC/PCD from Folding [BCLMS20,KST21]
	Slide 8: IVC/PCD from Folding [BCLMS20,KST21]
	Slide 9: IVC/PCD from Folding [BCLMS20,KST21]
	Slide 10: IVC/PCD from Folding [BCLMS20,KST21]
	Slide 11: Homomorphic Commitment
	Slide 12: LatticeFold: Contributions
	Slide 13: Ajtai Binding Commitments [Ajtai96]
	Slide 14: Ring/Module-based Ajtai [LM07,PR07]
	Slide 15: Challenges of Folding with Ajtai
	Slide 16: Re-represent witnesses w/ lower norms
	Slide 17: Performance
	Slide 18: Summary & Future Work
	Slide 19: Thank You

